A simple immersed interface method for 3D Poisson equation with jump conditions

碩士 === 國立交通大學 === 應用數學系數學建模與科學計算碩士班 === 102 === In this paper, we extend a simple version of the immersed interface method (IIM) for 2D Poisson problems to 3D with jump conditions across the interface. The numerical method is based on applying the Taylor's expansions along the normal direction...

Full description

Bibliographic Details
Main Authors: Chang, Yu-Lun, 張毓倫
Other Authors: Lai, Ming-Chih
Format: Others
Language:en_US
Published: 2014
Online Access:http://ndltd.ncl.edu.tw/handle/78064286775806472997
id ndltd-TW-102NCTU5507082
record_format oai_dc
spelling ndltd-TW-102NCTU55070822016-07-02T04:21:05Z http://ndltd.ncl.edu.tw/handle/78064286775806472997 A simple immersed interface method for 3D Poisson equation with jump conditions 內嵌介面法求解有不連續條件的三維Poisson方程式 Chang, Yu-Lun 張毓倫 碩士 國立交通大學 應用數學系數學建模與科學計算碩士班 102 In this paper, we extend a simple version of the immersed interface method (IIM) for 2D Poisson problems to 3D with jump conditions across the interface. The numerical method is based on applying the Taylor's expansions along the normal direction and incorporating the solution and its normal derivative jumps into the finite difference approximations. Then, we can apply some efficient iterative solvers such as the conjugate gradient method to solve the discretized Laplacian linear system. The numerical results show that the scheme is indeed second-order accurate. Lai, Ming-Chih 賴明治 2014 學位論文 ; thesis 22 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立交通大學 === 應用數學系數學建模與科學計算碩士班 === 102 === In this paper, we extend a simple version of the immersed interface method (IIM) for 2D Poisson problems to 3D with jump conditions across the interface. The numerical method is based on applying the Taylor's expansions along the normal direction and incorporating the solution and its normal derivative jumps into the finite difference approximations. Then, we can apply some efficient iterative solvers such as the conjugate gradient method to solve the discretized Laplacian linear system. The numerical results show that the scheme is indeed second-order accurate.
author2 Lai, Ming-Chih
author_facet Lai, Ming-Chih
Chang, Yu-Lun
張毓倫
author Chang, Yu-Lun
張毓倫
spellingShingle Chang, Yu-Lun
張毓倫
A simple immersed interface method for 3D Poisson equation with jump conditions
author_sort Chang, Yu-Lun
title A simple immersed interface method for 3D Poisson equation with jump conditions
title_short A simple immersed interface method for 3D Poisson equation with jump conditions
title_full A simple immersed interface method for 3D Poisson equation with jump conditions
title_fullStr A simple immersed interface method for 3D Poisson equation with jump conditions
title_full_unstemmed A simple immersed interface method for 3D Poisson equation with jump conditions
title_sort simple immersed interface method for 3d poisson equation with jump conditions
publishDate 2014
url http://ndltd.ncl.edu.tw/handle/78064286775806472997
work_keys_str_mv AT changyulun asimpleimmersedinterfacemethodfor3dpoissonequationwithjumpconditions
AT zhāngyùlún asimpleimmersedinterfacemethodfor3dpoissonequationwithjumpconditions
AT changyulun nèiqiànjièmiànfǎqiújiěyǒubùliánxùtiáojiàndesānwéipoissonfāngchéngshì
AT zhāngyùlún nèiqiànjièmiànfǎqiújiěyǒubùliánxùtiáojiàndesānwéipoissonfāngchéngshì
AT changyulun simpleimmersedinterfacemethodfor3dpoissonequationwithjumpconditions
AT zhāngyùlún simpleimmersedinterfacemethodfor3dpoissonequationwithjumpconditions
_version_ 1718332283662893056