Exploring Correlation Patterns for Anomalous Usage Detection in Smart Home

碩士 === 國立交通大學 === 資訊科學與工程研究所 === 102 === Owing to the great advance of sensor technologies, electric meters are widely deployed to collect usage data in smart home environment. The electricity consumption data of all appliances can be collected easily. From these log data, some useful information an...

Full description

Bibliographic Details
Main Authors: Tran, Nguyen Minh Thai, 陳阮明泰
Other Authors: Peng, Wen-Chih
Format: Others
Language:en_US
Published: 2014
Online Access:http://ndltd.ncl.edu.tw/handle/85129331278153735266
Description
Summary:碩士 === 國立交通大學 === 資訊科學與工程研究所 === 102 === Owing to the great advance of sensor technologies, electric meters are widely deployed to collect usage data in smart home environment. The electricity consumption data of all appliances can be collected easily. From these log data, some useful information and pattern can be discovered which may help residents to better understand the usage of appliances. In this paper, we develop an intelligent system, Anomaly Detection System (ADS), to detect the abnormal usage behavior for users in a smart home environment. Most previous studies on anomaly detection only conducted the usage behavior on single device and neglect the appliance correlation. With considering the correlation among appliances and the probability distribution of each appliance, we propose several methods to detect abnormal usage which can help users distinguish their unnecessary usages. We also propose a parameter tuning strategy to optimize the mining result in ADS system. The experimental results indicate the efficiency and the effectiveness of ADS. Finally, we use a real dataset to show the practicability of abnormal usage detection.