A 3D Hydrostatic k-ε model for Open-Channel Flow

碩士 === 國立交通大學 === 土木工程系所 === 102 === A 3D hydrostatic model based on a vertical horizontal splitting (VHS) concept is developed in this study. The standard k-ε model, a two-equation turbulent model, and two kinds of zero-equation models are adopted to calculate eddy viscosity. The orthogonal curvili...

Full description

Bibliographic Details
Main Authors: Lin, Yi-Chun, 林怡君
Other Authors: Yang,Jinn-Chuang
Format: Others
Language:zh-TW
Published: 2014
Online Access:http://ndltd.ncl.edu.tw/handle/42s4q8
Description
Summary:碩士 === 國立交通大學 === 土木工程系所 === 102 === A 3D hydrostatic model based on a vertical horizontal splitting (VHS) concept is developed in this study. The standard k-ε model, a two-equation turbulent model, and two kinds of zero-equation models are adopted to calculate eddy viscosity. The orthogonal curvilinear coordinate system and the sigma coordinate system are used to cope with the irregularity of channel geometry. The water elevation and the depth-averaged velocity will be solved by the 2D depth-averaged model, and then the velocity profile along the vertical direction will be solved by the velocity defect model. The implicit numerical schemes are used to discrete all of the equations to preserve the model stability unconditionally. Two experimental cases including the flow in straight channel and sharp bend were simulated by the model. Through the comparison between the experimental data and simulation results, the eddy viscosity computed from two-equation and zero-equation turbulent models were examined and discussed in depth.