Summary: | 碩士 === 國立成功大學 === 物理學系 === 102 === Peres-Horodecki-Simon criterion and logarithmic negativity are very powerful tools to determine the separability and to measure the entanglement of Gaussian states. In this thesis, we set up several models, all of which comprise a number of coupled oscillators, and by facilitating the separability criterion and measure we're able to calculate the entanglement between each pair of oscillators at any time analytically, which reveals several interesting phenomena, including entanglement sudden death and revival of entanglement. Also, we compare the entanglement between center of mass coordinates and that of their member oscillators, and thereby understand the role of it in a composite system. Lastly, we'll make an attempt at appreciating the effects of particle numbers on entanglement. We hope these analytically solvable models can help us understand more about the entanglement of interacting systems and of large systems.
|