Upper Bounds on k-rainbow Domination Number of Sierpiński Graphs
碩士 === 明志科技大學 === 工業工程與管理系碩士班 === 102 === The k-rainbow domination is a variant of the classical domination problem in graphs and is defined as follows. Given an undirected graph G = (V, E), we have a set C with k colors and assign an arbitrary subset of these colors to each vertex of G. If a vertex...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
2014
|
Online Access: | http://ndltd.ncl.edu.tw/handle/edz49c |
id |
ndltd-TW-102MIT00030032 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-102MIT000300322019-05-15T21:23:55Z http://ndltd.ncl.edu.tw/handle/edz49c Upper Bounds on k-rainbow Domination Number of Sierpiński Graphs 在謝爾賓斯基圖中求解k-彩虹支配問題 Ting-Wei Liu 劉庭崴 碩士 明志科技大學 工業工程與管理系碩士班 102 The k-rainbow domination is a variant of the classical domination problem in graphs and is defined as follows. Given an undirected graph G = (V, E), we have a set C with k colors and assign an arbitrary subset of these colors to each vertex of G. If a vertex is assigned an empty set, then the union of color sets of its neighbors must be C. This assignment is called the k-rainbow dominating function of G. The minimum sum of numbers of assigned colors over all vertices of G is called the k-rainbow domination number of G. In this paper, we give some algorithms to determine the k-rainbow dominating sets on Sierpiński graphs with k ∈ {2, 3, 4}, and we have the upper bounds of k-rainbow domination number on Sierpiński graph where k ∈ {2, 3, 4}. Kung-Jui Pai 白恭瑞 2014 學位論文 ; thesis 45 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 明志科技大學 === 工業工程與管理系碩士班 === 102 === The k-rainbow domination is a variant of the classical domination problem in graphs and is defined as follows. Given an undirected graph G = (V, E), we have a set C with k colors and assign an arbitrary subset of these colors to each vertex of G. If a vertex is assigned an empty set, then the union of color sets of its neighbors must be C. This assignment is called the k-rainbow dominating function of G. The minimum sum of numbers of assigned colors over all vertices of G is called the k-rainbow domination number of G. In this paper, we give some algorithms to determine the k-rainbow dominating sets on Sierpiński graphs with k ∈ {2, 3, 4}, and we have the upper bounds of k-rainbow domination number on Sierpiński graph where k ∈ {2, 3, 4}.
|
author2 |
Kung-Jui Pai |
author_facet |
Kung-Jui Pai Ting-Wei Liu 劉庭崴 |
author |
Ting-Wei Liu 劉庭崴 |
spellingShingle |
Ting-Wei Liu 劉庭崴 Upper Bounds on k-rainbow Domination Number of Sierpiński Graphs |
author_sort |
Ting-Wei Liu |
title |
Upper Bounds on k-rainbow Domination Number of Sierpiński Graphs |
title_short |
Upper Bounds on k-rainbow Domination Number of Sierpiński Graphs |
title_full |
Upper Bounds on k-rainbow Domination Number of Sierpiński Graphs |
title_fullStr |
Upper Bounds on k-rainbow Domination Number of Sierpiński Graphs |
title_full_unstemmed |
Upper Bounds on k-rainbow Domination Number of Sierpiński Graphs |
title_sort |
upper bounds on k-rainbow domination number of sierpiński graphs |
publishDate |
2014 |
url |
http://ndltd.ncl.edu.tw/handle/edz49c |
work_keys_str_mv |
AT tingweiliu upperboundsonkrainbowdominationnumberofsierpinskigraphs AT liútíngwǎi upperboundsonkrainbowdominationnumberofsierpinskigraphs AT tingweiliu zàixièěrbīnsījītúzhōngqiújiěkcǎihóngzhīpèiwèntí AT liútíngwǎi zàixièěrbīnsījītúzhōngqiújiěkcǎihóngzhīpèiwèntí |
_version_ |
1719114131144966144 |