Upper Bounds on k-rainbow Domination Number of Sierpiński Graphs

碩士 === 明志科技大學 === 工業工程與管理系碩士班 === 102 === The k-rainbow domination is a variant of the classical domination problem in graphs and is defined as follows. Given an undirected graph G = (V, E), we have a set C with k colors and assign an arbitrary subset of these colors to each vertex of G. If a vertex...

Full description

Bibliographic Details
Main Authors: Ting-Wei Liu, 劉庭崴
Other Authors: Kung-Jui Pai
Format: Others
Language:zh-TW
Published: 2014
Online Access:http://ndltd.ncl.edu.tw/handle/edz49c
id ndltd-TW-102MIT00030032
record_format oai_dc
spelling ndltd-TW-102MIT000300322019-05-15T21:23:55Z http://ndltd.ncl.edu.tw/handle/edz49c Upper Bounds on k-rainbow Domination Number of Sierpiński Graphs 在謝爾賓斯基圖中求解k-彩虹支配問題 Ting-Wei Liu 劉庭崴 碩士 明志科技大學 工業工程與管理系碩士班 102 The k-rainbow domination is a variant of the classical domination problem in graphs and is defined as follows. Given an undirected graph G = (V, E), we have a set C with k colors and assign an arbitrary subset of these colors to each vertex of G. If a vertex is assigned an empty set, then the union of color sets of its neighbors must be C. This assignment is called the k-rainbow dominating function of G. The minimum sum of numbers of assigned colors over all vertices of G is called the k-rainbow domination number of G. In this paper, we give some algorithms to determine the k-rainbow dominating sets on Sierpiński graphs with k ∈ {2, 3, 4}, and we have the upper bounds of k-rainbow domination number on Sierpiński graph where k ∈ {2, 3, 4}. Kung-Jui Pai 白恭瑞 2014 學位論文 ; thesis 45 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 明志科技大學 === 工業工程與管理系碩士班 === 102 === The k-rainbow domination is a variant of the classical domination problem in graphs and is defined as follows. Given an undirected graph G = (V, E), we have a set C with k colors and assign an arbitrary subset of these colors to each vertex of G. If a vertex is assigned an empty set, then the union of color sets of its neighbors must be C. This assignment is called the k-rainbow dominating function of G. The minimum sum of numbers of assigned colors over all vertices of G is called the k-rainbow domination number of G. In this paper, we give some algorithms to determine the k-rainbow dominating sets on Sierpiński graphs with k ∈ {2, 3, 4}, and we have the upper bounds of k-rainbow domination number on Sierpiński graph where k ∈ {2, 3, 4}.
author2 Kung-Jui Pai
author_facet Kung-Jui Pai
Ting-Wei Liu
劉庭崴
author Ting-Wei Liu
劉庭崴
spellingShingle Ting-Wei Liu
劉庭崴
Upper Bounds on k-rainbow Domination Number of Sierpiński Graphs
author_sort Ting-Wei Liu
title Upper Bounds on k-rainbow Domination Number of Sierpiński Graphs
title_short Upper Bounds on k-rainbow Domination Number of Sierpiński Graphs
title_full Upper Bounds on k-rainbow Domination Number of Sierpiński Graphs
title_fullStr Upper Bounds on k-rainbow Domination Number of Sierpiński Graphs
title_full_unstemmed Upper Bounds on k-rainbow Domination Number of Sierpiński Graphs
title_sort upper bounds on k-rainbow domination number of sierpiński graphs
publishDate 2014
url http://ndltd.ncl.edu.tw/handle/edz49c
work_keys_str_mv AT tingweiliu upperboundsonkrainbowdominationnumberofsierpinskigraphs
AT liútíngwǎi upperboundsonkrainbowdominationnumberofsierpinskigraphs
AT tingweiliu zàixièěrbīnsījītúzhōngqiújiěkcǎihóngzhīpèiwèntí
AT liútíngwǎi zàixièěrbīnsījītúzhōngqiújiěkcǎihóngzhīpèiwèntí
_version_ 1719114131144966144