Design of Optimal Parameters for Improving Step Iterative Learning Control Using Taguchi Method
碩士 === 國立高雄應用科技大學 === 電機工程系博碩士班 === 102 === In this thesis, designs of optimal parameters for improving step iterative learning control using Taguchi Method is proposed. First of all, we introduce an iterative learning control algorithm with self-adaptive steps. The method determines steps to upd...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
2014
|
Online Access: | http://ndltd.ncl.edu.tw/handle/21761113254363924232 |
id |
ndltd-TW-102KUAS0442054 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-102KUAS04420542016-03-11T04:13:14Z http://ndltd.ncl.edu.tw/handle/21761113254363924232 Design of Optimal Parameters for Improving Step Iterative Learning Control Using Taguchi Method 應用田口方法於改良式步階迭代學習控制之最佳化參數設計 Yi-Chan Hung 洪翊展 碩士 國立高雄應用科技大學 電機工程系博碩士班 102 In this thesis, designs of optimal parameters for improving step iterative learning control using Taguchi Method is proposed. First of all, we introduce an iterative learning control algorithm with self-adaptive steps. The method determines steps to update control gain by error sum of the system. However, the relationship between error sum of the system and steps is not easy to obtain. Hence, we can’t set the control factors effectively to obtain optimal results after using Taguchi Method. Therefore, this thesis decides steps by individual errors and proposes a way which can convert between steps and individual errors. When the conversion is done and Taguchi Method is applied to design best parameters, we can construct the controller that has quick convergence speed and high control precision. Jyh-Horng Chou 周至宏 2014 學位論文 ; thesis 52 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立高雄應用科技大學 === 電機工程系博碩士班 === 102 === In this thesis, designs of optimal parameters for improving step iterative learning control using Taguchi Method is proposed. First of all, we introduce an iterative learning control algorithm with self-adaptive steps. The method determines steps to update control gain by error sum of the system. However, the relationship between error sum of the system and steps is not easy to obtain. Hence, we can’t set the control factors effectively to obtain optimal results after using Taguchi Method. Therefore, this thesis decides steps by individual errors and proposes a way which can convert between steps and individual errors. When the conversion is done and Taguchi Method is applied to design best parameters, we can construct the controller that has quick convergence speed and high control precision.
|
author2 |
Jyh-Horng Chou |
author_facet |
Jyh-Horng Chou Yi-Chan Hung 洪翊展 |
author |
Yi-Chan Hung 洪翊展 |
spellingShingle |
Yi-Chan Hung 洪翊展 Design of Optimal Parameters for Improving Step Iterative Learning Control Using Taguchi Method |
author_sort |
Yi-Chan Hung |
title |
Design of Optimal Parameters for Improving Step Iterative Learning Control Using Taguchi Method |
title_short |
Design of Optimal Parameters for Improving Step Iterative Learning Control Using Taguchi Method |
title_full |
Design of Optimal Parameters for Improving Step Iterative Learning Control Using Taguchi Method |
title_fullStr |
Design of Optimal Parameters for Improving Step Iterative Learning Control Using Taguchi Method |
title_full_unstemmed |
Design of Optimal Parameters for Improving Step Iterative Learning Control Using Taguchi Method |
title_sort |
design of optimal parameters for improving step iterative learning control using taguchi method |
publishDate |
2014 |
url |
http://ndltd.ncl.edu.tw/handle/21761113254363924232 |
work_keys_str_mv |
AT yichanhung designofoptimalparametersforimprovingstepiterativelearningcontrolusingtaguchimethod AT hóngyìzhǎn designofoptimalparametersforimprovingstepiterativelearningcontrolusingtaguchimethod AT yichanhung yīngyòngtiánkǒufāngfǎyúgǎiliángshìbùjiēdiédàixuéxíkòngzhìzhīzuìjiāhuàcānshùshèjì AT hóngyìzhǎn yīngyòngtiánkǒufāngfǎyúgǎiliángshìbùjiēdiédàixuéxíkòngzhìzhīzuìjiāhuàcānshùshèjì |
_version_ |
1718203384896421888 |