Design of Optimal Parameters for Improving Step Iterative Learning Control Using Taguchi Method

碩士 === 國立高雄應用科技大學 === 電機工程系博碩士班 === 102 === In this thesis, designs of optimal parameters for improving step iterative learning control using Taguchi Method is proposed. First of all, we introduce an iterative learning control algorithm with self-adaptive steps. The method determines steps to upd...

Full description

Bibliographic Details
Main Authors: Yi-Chan Hung, 洪翊展
Other Authors: Jyh-Horng Chou
Format: Others
Language:zh-TW
Published: 2014
Online Access:http://ndltd.ncl.edu.tw/handle/21761113254363924232
id ndltd-TW-102KUAS0442054
record_format oai_dc
spelling ndltd-TW-102KUAS04420542016-03-11T04:13:14Z http://ndltd.ncl.edu.tw/handle/21761113254363924232 Design of Optimal Parameters for Improving Step Iterative Learning Control Using Taguchi Method 應用田口方法於改良式步階迭代學習控制之最佳化參數設計 Yi-Chan Hung 洪翊展 碩士 國立高雄應用科技大學 電機工程系博碩士班 102 In this thesis, designs of optimal parameters for improving step iterative learning control using Taguchi Method is proposed. First of all, we introduce an iterative learning control algorithm with self-adaptive steps. The method determines steps to update control gain by error sum of the system. However, the relationship between error sum of the system and steps is not easy to obtain. Hence, we can’t set the control factors effectively to obtain optimal results after using Taguchi Method. Therefore, this thesis decides steps by individual errors and proposes a way which can convert between steps and individual errors. When the conversion is done and Taguchi Method is applied to design best parameters, we can construct the controller that has quick convergence speed and high control precision. Jyh-Horng Chou 周至宏 2014 學位論文 ; thesis 52 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立高雄應用科技大學 === 電機工程系博碩士班 === 102 === In this thesis, designs of optimal parameters for improving step iterative learning control using Taguchi Method is proposed. First of all, we introduce an iterative learning control algorithm with self-adaptive steps. The method determines steps to update control gain by error sum of the system. However, the relationship between error sum of the system and steps is not easy to obtain. Hence, we can’t set the control factors effectively to obtain optimal results after using Taguchi Method. Therefore, this thesis decides steps by individual errors and proposes a way which can convert between steps and individual errors. When the conversion is done and Taguchi Method is applied to design best parameters, we can construct the controller that has quick convergence speed and high control precision.
author2 Jyh-Horng Chou
author_facet Jyh-Horng Chou
Yi-Chan Hung
洪翊展
author Yi-Chan Hung
洪翊展
spellingShingle Yi-Chan Hung
洪翊展
Design of Optimal Parameters for Improving Step Iterative Learning Control Using Taguchi Method
author_sort Yi-Chan Hung
title Design of Optimal Parameters for Improving Step Iterative Learning Control Using Taguchi Method
title_short Design of Optimal Parameters for Improving Step Iterative Learning Control Using Taguchi Method
title_full Design of Optimal Parameters for Improving Step Iterative Learning Control Using Taguchi Method
title_fullStr Design of Optimal Parameters for Improving Step Iterative Learning Control Using Taguchi Method
title_full_unstemmed Design of Optimal Parameters for Improving Step Iterative Learning Control Using Taguchi Method
title_sort design of optimal parameters for improving step iterative learning control using taguchi method
publishDate 2014
url http://ndltd.ncl.edu.tw/handle/21761113254363924232
work_keys_str_mv AT yichanhung designofoptimalparametersforimprovingstepiterativelearningcontrolusingtaguchimethod
AT hóngyìzhǎn designofoptimalparametersforimprovingstepiterativelearningcontrolusingtaguchimethod
AT yichanhung yīngyòngtiánkǒufāngfǎyúgǎiliángshìbùjiēdiédàixuéxíkòngzhìzhīzuìjiāhuàcānshùshèjì
AT hóngyìzhǎn yīngyòngtiánkǒufāngfǎyúgǎiliángshìbùjiēdiédàixuéxíkòngzhìzhīzuìjiāhuàcānshùshèjì
_version_ 1718203384896421888