Photoelectrocatalytic Degradation of Dyes using Graphene Composite Titanium Dioxide Electrodes

碩士 === 朝陽科技大學 === 環境工程與管理系 === 102 === The ultrasonic and Hummers method were used in this study to prepare graphene oxide. The cyclic voltammetry was used for reduction of graphene oxide to graphene and deposition of graphene on the TiO2 nanotube array film. Thus, the graphene composited TiO2 nanot...

Full description

Bibliographic Details
Main Authors: Chao-Cheng Tien, 田照正
Other Authors: Wen-Yu Wang
Format: Others
Language:zh-TW
Published: 2014
Online Access:http://ndltd.ncl.edu.tw/handle/23723560957186331834
Description
Summary:碩士 === 朝陽科技大學 === 環境工程與管理系 === 102 === The ultrasonic and Hummers method were used in this study to prepare graphene oxide. The cyclic voltammetry was used for reduction of graphene oxide to graphene and deposition of graphene on the TiO2 nanotube array film. Thus, the graphene composited TiO2 nanotube array film was prepared. The photoelectrocatalysis of dye solution and its degradation efficiency was implemented with visible light and UV. The open-circuit voltage, closed circuit current and AC impedance of electrochemical analysis were implemented. The results showed that the dye degradation efficiency of the graphene composite TiO2 nanotube array film in UV-irradiation is better than that of TiO2 nanotube array film. With bias of 1 V, the addition of 0.1 M potassium chloride resulted in the optimum photoelectrocatalytic degradation efficiency. The degradation efficiency is still good when the methyl orange solution concentration is increased to 30 mg/L. The photocurrent of graphene composite TiO2 nanotube array film was increased compared with TiO2 nanotube array film. The results proving that the graphene composite TiO2 nanotube array film can increase the overall photoelectrocatalytic efficiency. In the same way, photocatalysis and photoelectrocatalysis of methyl orange solution with the visible light showed that the graphene composite TiO2 nanotube array film also has better catalytic efficiency than TiO2 nanotube array film.