Maximum Likelihood Estimator of Current Status Data under Bernstein Proportional Odds Cure Model

碩士 === 中原大學 === 應用數學研究所 === 102 === In this paper, we use Maximum Likelihood Estimator of Current Status Data under Bernstein Proportion Odds Cure Model to carry out research under Ching-Hung Liu’s Thesis (2012) , using the Weibull distribution survival distribution of time to do, is to use the esti...

Full description

Bibliographic Details
Main Authors: Wen-Chieh Tai, 戴文傑
Other Authors: Yuh-Jenn Wu
Format: Others
Language:zh-TW
Published: 2014
Online Access:http://ndltd.ncl.edu.tw/handle/sdg937
id ndltd-TW-102CYCU5507012
record_format oai_dc
spelling ndltd-TW-102CYCU55070122019-05-15T21:14:00Z http://ndltd.ncl.edu.tw/handle/sdg937 Maximum Likelihood Estimator of Current Status Data under Bernstein Proportional Odds Cure Model 現狀數據在伯氏比率勝算比治癒率模型下之最大概似估計 Wen-Chieh Tai 戴文傑 碩士 中原大學 應用數學研究所 102 In this paper, we use Maximum Likelihood Estimator of Current Status Data under Bernstein Proportion Odds Cure Model to carry out research under Ching-Hung Liu’s Thesis (2012) , using the Weibull distribution survival distribution of time to do, is to use the estimated parameters maximum likelihood estimator, we use Bernstein polynomials to replace the Weibull distribution, the estimated parameters are also using maximum likelihood estimator. In making the maximum likelihood estimate, because many parameters and we are not fixed, so we will use the Monte Carlo Markov chain (M.C.M.C.) to calculate the maximum likelihood estimator, and the potential to make a distribution function graphic factors, write another basis for the comparison of algorithms and general graphics algorithms that map looks like if found, then use a graphical algorithm which estimates the optimum. Yuh-Jenn Wu 吳裕振 2014 學位論文 ; thesis 24 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 中原大學 === 應用數學研究所 === 102 === In this paper, we use Maximum Likelihood Estimator of Current Status Data under Bernstein Proportion Odds Cure Model to carry out research under Ching-Hung Liu’s Thesis (2012) , using the Weibull distribution survival distribution of time to do, is to use the estimated parameters maximum likelihood estimator, we use Bernstein polynomials to replace the Weibull distribution, the estimated parameters are also using maximum likelihood estimator. In making the maximum likelihood estimate, because many parameters and we are not fixed, so we will use the Monte Carlo Markov chain (M.C.M.C.) to calculate the maximum likelihood estimator, and the potential to make a distribution function graphic factors, write another basis for the comparison of algorithms and general graphics algorithms that map looks like if found, then use a graphical algorithm which estimates the optimum.
author2 Yuh-Jenn Wu
author_facet Yuh-Jenn Wu
Wen-Chieh Tai
戴文傑
author Wen-Chieh Tai
戴文傑
spellingShingle Wen-Chieh Tai
戴文傑
Maximum Likelihood Estimator of Current Status Data under Bernstein Proportional Odds Cure Model
author_sort Wen-Chieh Tai
title Maximum Likelihood Estimator of Current Status Data under Bernstein Proportional Odds Cure Model
title_short Maximum Likelihood Estimator of Current Status Data under Bernstein Proportional Odds Cure Model
title_full Maximum Likelihood Estimator of Current Status Data under Bernstein Proportional Odds Cure Model
title_fullStr Maximum Likelihood Estimator of Current Status Data under Bernstein Proportional Odds Cure Model
title_full_unstemmed Maximum Likelihood Estimator of Current Status Data under Bernstein Proportional Odds Cure Model
title_sort maximum likelihood estimator of current status data under bernstein proportional odds cure model
publishDate 2014
url http://ndltd.ncl.edu.tw/handle/sdg937
work_keys_str_mv AT wenchiehtai maximumlikelihoodestimatorofcurrentstatusdataunderbernsteinproportionaloddscuremodel
AT dàiwénjié maximumlikelihoodestimatorofcurrentstatusdataunderbernsteinproportionaloddscuremodel
AT wenchiehtai xiànzhuàngshùjùzàibóshìbǐlǜshèngsuànbǐzhìyùlǜmóxíngxiàzhīzuìdàgàishìgūjì
AT dàiwénjié xiànzhuàngshùjùzàibóshìbǐlǜshèngsuànbǐzhìyùlǜmóxíngxiàzhīzuìdàgàishìgūjì
_version_ 1719111416830492672