Variable Step-Size and Variable Regularization Adaptive Filtering Algorithms
博士 === 元智大學 === 電機工程學系 === 101 === Numerous variable step-size and variable regularization algorithms have been derived to solve the dilemma of fast convergence rate or low excess mean-square error in the past two decades. This thesis proposes new nonparametric time-domain variable step-size normali...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Online Access: | http://ndltd.ncl.edu.tw/handle/42422157543841638980 |
id |
ndltd-TW-101YZU05442045 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-101YZU054420452016-03-18T04:41:49Z http://ndltd.ncl.edu.tw/handle/42422157543841638980 Variable Step-Size and Variable Regularization Adaptive Filtering Algorithms 可變步階及可變調整參數之適應性濾波器演算法 Hsu-Chang Huang 黃旭章 博士 元智大學 電機工程學系 101 Numerous variable step-size and variable regularization algorithms have been derived to solve the dilemma of fast convergence rate or low excess mean-square error in the past two decades. This thesis proposes new nonparametric time-domain variable step-size normalized least mean-square (VSS-NLMS) and variable-regularization NLMS (VR-NLMS) algorithms. The VSS-NLMS employs the mean-square error (MSE) and the estimated system noise power to control the step-size update, and the VR-NLMS uses the input signal power, MSE and the estimated system noise power to control the variable regularization parameter. Extending the ideas of our VSS-NLMS algorithm, this thesis also presents a variable step-size control method for the partitioned frequency-domain block LMS (PFBLMS) adaptive filter. Junghsi Lee 李仲溪 學位論文 ; thesis 99 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
博士 === 元智大學 === 電機工程學系 === 101 === Numerous variable step-size and variable regularization algorithms have been derived to solve the dilemma of fast convergence rate or low excess mean-square error in the past two decades. This thesis proposes new nonparametric time-domain variable step-size normalized least mean-square (VSS-NLMS) and variable-regularization NLMS (VR-NLMS) algorithms. The VSS-NLMS employs the mean-square error (MSE) and the estimated system noise power to control the step-size update, and the VR-NLMS uses the input signal power, MSE and the estimated system noise power to control the variable regularization parameter. Extending the ideas of our VSS-NLMS algorithm, this thesis also presents a variable step-size control method for the partitioned frequency-domain block LMS (PFBLMS) adaptive filter.
|
author2 |
Junghsi Lee |
author_facet |
Junghsi Lee Hsu-Chang Huang 黃旭章 |
author |
Hsu-Chang Huang 黃旭章 |
spellingShingle |
Hsu-Chang Huang 黃旭章 Variable Step-Size and Variable Regularization Adaptive Filtering Algorithms |
author_sort |
Hsu-Chang Huang |
title |
Variable Step-Size and Variable Regularization Adaptive Filtering Algorithms |
title_short |
Variable Step-Size and Variable Regularization Adaptive Filtering Algorithms |
title_full |
Variable Step-Size and Variable Regularization Adaptive Filtering Algorithms |
title_fullStr |
Variable Step-Size and Variable Regularization Adaptive Filtering Algorithms |
title_full_unstemmed |
Variable Step-Size and Variable Regularization Adaptive Filtering Algorithms |
title_sort |
variable step-size and variable regularization adaptive filtering algorithms |
url |
http://ndltd.ncl.edu.tw/handle/42422157543841638980 |
work_keys_str_mv |
AT hsuchanghuang variablestepsizeandvariableregularizationadaptivefilteringalgorithms AT huángxùzhāng variablestepsizeandvariableregularizationadaptivefilteringalgorithms AT hsuchanghuang kěbiànbùjiējíkěbiàndiàozhěngcānshùzhīshìyīngxìnglǜbōqìyǎnsuànfǎ AT huángxùzhāng kěbiànbùjiējíkěbiàndiàozhěngcānshùzhīshìyīngxìnglǜbōqìyǎnsuànfǎ |
_version_ |
1718207103672254464 |