Study of New Calcium Phosphate Bone Substitutes in Alveolar Bone Preservation

博士 === 臺北醫學大學 === 牙醫學系碩博士班 === 101 === Hydroxyapatite (Ca10(PO4)6(OH)2), with its high biocompatibility and good bioaffinity, stimulates osteoconduction and is slowly replaced by the host bone after implantation. However, clinical use of HA as a bone substitute has proven problematic. It is difficul...

Full description

Bibliographic Details
Main Authors: SHIH TSAT CHIN, 石采芹
Other Authors: 林哲堂
Format: Others
Language:zh-TW
Published: 2013
Online Access:http://ndltd.ncl.edu.tw/handle/13452869145037693693
Description
Summary:博士 === 臺北醫學大學 === 牙醫學系碩博士班 === 101 === Hydroxyapatite (Ca10(PO4)6(OH)2), with its high biocompatibility and good bioaffinity, stimulates osteoconduction and is slowly replaced by the host bone after implantation. However, clinical use of HA as a bone substitute has proven problematic. It is difficult to prevent dispersion of the HA granules and to mold the granules into the desired shape. Calcium sulfate as a bone graft substitute is rapidly resorbed in vivo releasing calcium ions, but fails to provide a long-term, three-dimensional framework to support osteoconduction. The setting properties of calcium sulfate, however, allow it to be applied in a slurry form, making it easier to handle and apply in different situations. This study examines the in vivo response of a (Hydroxyapatite, apatitic phase) / calcium sulfate dehydrate (CSD) composite using different ratios in the mandibular premolar sockets of the beagle. The HA (AP) / CSD composite materials prepared in ratios of 30/70, 50/50, and 70/30 were implanted into the mandibular premolar sockets for five and ten weeks. The control socket was empty. We compared the histology and the changes in height and width of the mandibular premolar sockets in the beagle. The composite graft in the 30/70 ratio had the best ability to form new bones.