Summary: | 碩士 === 淡江大學 === 水資源及環境工程學系碩士班 === 101 === This paper examines flow patterns of different fluid densities on multiple inclined boundaries, and the flows are called gravity currents. Gravity currents are generated because that the high density fluid penetrates into the low density fluid due to gravity effect. Understanding gravity current characteristics can effectively help utilize the reservoir desilting technique to increase the life of the reservoir. Gravity currents on sloping boundaries can be divided into two categories with non-continuous inflow by numerical simulation and actual experimental operation in two ways, the approach taken in this paper for the experimental operation of the non-continuous inflow type. Experiments for gravity currents generated from an instantaneous buoyancy source propagating on an inclined boundary in the slope angle range 0°≤θ≤9° are reported.
In previous studies, we know all the gravity current flows are to follow a fluid pattern, i.e. the gravity currents front position obeys with the power-relationship. In this study, four relative density differences were chosen, i.e. ϵ≈0.02,0.05,0.10,0.17. ϵ≈0.02 as low relative density difference, which the rest is set at a high relative density difference discussed separately. In our results, we found the front location data deviate from the power-relationship on the late deceleration phase. In addition, we found the experience of the momentum equation constants KM is proportional to the angle, and the maximum value is occurs at θ≈6°; By the same angle different density difference experimental results, the maximum front velocity is proportional to the density difference and t(max )is inversely proportional to the density difference.
|