Optimization of system parameters for APDL models Using Particle Swarm Optimization

碩士 === 國立臺北科技大學 === 自動化科技研究所 === 101 === In this study, the optimization code using MATLAB and ANSYS parametric design language (APDL) is proposed for parameter optimization. Three type optimization methods, which are genetic algorithm(GA), particle swarm optimization(PSO) and multi-objective geneti...

Full description

Bibliographic Details
Main Authors: Ke-Lung Shih, 施克隆
Other Authors: Chih-Jer Lin
Format: Others
Language:zh-TW
Published: 2013
Online Access:http://ndltd.ncl.edu.tw/handle/t2c823
id ndltd-TW-101TIT05146004
record_format oai_dc
spelling ndltd-TW-101TIT051460042019-05-15T21:02:28Z http://ndltd.ncl.edu.tw/handle/t2c823 Optimization of system parameters for APDL models Using Particle Swarm Optimization 應用粒子群演算法於APDL模型之參數最佳化 Ke-Lung Shih 施克隆 碩士 國立臺北科技大學 自動化科技研究所 101 In this study, the optimization code using MATLAB and ANSYS parametric design language (APDL) is proposed for parameter optimization. Three type optimization methods, which are genetic algorithm(GA), particle swarm optimization(PSO) and multi-objective genetic algorithms (MOGA), are studied in three case studies. The first two optimization methods are preformed using MATLAB codes integrated with APDL simulation to obtain the optimal parameters for comparison. The last one (MOGA) is implemented using the ANSYS workbench. The first case is to obtain the optimal frequency variation for an ERF (Electro-Rheological Fluid) embedded structure for the shock absorber. A connector design is studied for the last two cases to achieve the maximal contact force with the minimal stress. Chih-Jer Lin 林志哲 2013 學位論文 ; thesis 107 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立臺北科技大學 === 自動化科技研究所 === 101 === In this study, the optimization code using MATLAB and ANSYS parametric design language (APDL) is proposed for parameter optimization. Three type optimization methods, which are genetic algorithm(GA), particle swarm optimization(PSO) and multi-objective genetic algorithms (MOGA), are studied in three case studies. The first two optimization methods are preformed using MATLAB codes integrated with APDL simulation to obtain the optimal parameters for comparison. The last one (MOGA) is implemented using the ANSYS workbench. The first case is to obtain the optimal frequency variation for an ERF (Electro-Rheological Fluid) embedded structure for the shock absorber. A connector design is studied for the last two cases to achieve the maximal contact force with the minimal stress.
author2 Chih-Jer Lin
author_facet Chih-Jer Lin
Ke-Lung Shih
施克隆
author Ke-Lung Shih
施克隆
spellingShingle Ke-Lung Shih
施克隆
Optimization of system parameters for APDL models Using Particle Swarm Optimization
author_sort Ke-Lung Shih
title Optimization of system parameters for APDL models Using Particle Swarm Optimization
title_short Optimization of system parameters for APDL models Using Particle Swarm Optimization
title_full Optimization of system parameters for APDL models Using Particle Swarm Optimization
title_fullStr Optimization of system parameters for APDL models Using Particle Swarm Optimization
title_full_unstemmed Optimization of system parameters for APDL models Using Particle Swarm Optimization
title_sort optimization of system parameters for apdl models using particle swarm optimization
publishDate 2013
url http://ndltd.ncl.edu.tw/handle/t2c823
work_keys_str_mv AT kelungshih optimizationofsystemparametersforapdlmodelsusingparticleswarmoptimization
AT shīkèlóng optimizationofsystemparametersforapdlmodelsusingparticleswarmoptimization
AT kelungshih yīngyònglìziqúnyǎnsuànfǎyúapdlmóxíngzhīcānshùzuìjiāhuà
AT shīkèlóng yīngyònglìziqúnyǎnsuànfǎyúapdlmóxíngzhīcānshùzuìjiāhuà
_version_ 1719107586272264192