Optimization of system parameters for APDL models Using Particle Swarm Optimization
碩士 === 國立臺北科技大學 === 自動化科技研究所 === 101 === In this study, the optimization code using MATLAB and ANSYS parametric design language (APDL) is proposed for parameter optimization. Three type optimization methods, which are genetic algorithm(GA), particle swarm optimization(PSO) and multi-objective geneti...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
2013
|
Online Access: | http://ndltd.ncl.edu.tw/handle/t2c823 |
id |
ndltd-TW-101TIT05146004 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-101TIT051460042019-05-15T21:02:28Z http://ndltd.ncl.edu.tw/handle/t2c823 Optimization of system parameters for APDL models Using Particle Swarm Optimization 應用粒子群演算法於APDL模型之參數最佳化 Ke-Lung Shih 施克隆 碩士 國立臺北科技大學 自動化科技研究所 101 In this study, the optimization code using MATLAB and ANSYS parametric design language (APDL) is proposed for parameter optimization. Three type optimization methods, which are genetic algorithm(GA), particle swarm optimization(PSO) and multi-objective genetic algorithms (MOGA), are studied in three case studies. The first two optimization methods are preformed using MATLAB codes integrated with APDL simulation to obtain the optimal parameters for comparison. The last one (MOGA) is implemented using the ANSYS workbench. The first case is to obtain the optimal frequency variation for an ERF (Electro-Rheological Fluid) embedded structure for the shock absorber. A connector design is studied for the last two cases to achieve the maximal contact force with the minimal stress. Chih-Jer Lin 林志哲 2013 學位論文 ; thesis 107 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立臺北科技大學 === 自動化科技研究所 === 101 === In this study, the optimization code using MATLAB and ANSYS parametric design language (APDL) is proposed for parameter optimization. Three type optimization methods, which are genetic algorithm(GA), particle swarm optimization(PSO) and multi-objective genetic algorithms (MOGA), are studied in three case studies. The first two optimization methods are preformed using MATLAB codes integrated with APDL simulation to obtain the optimal parameters for comparison. The last one (MOGA) is implemented using the ANSYS workbench.
The first case is to obtain the optimal frequency variation for an ERF (Electro-Rheological Fluid) embedded structure for the shock absorber. A connector design is studied for the last two cases to achieve the maximal contact force with the minimal stress.
|
author2 |
Chih-Jer Lin |
author_facet |
Chih-Jer Lin Ke-Lung Shih 施克隆 |
author |
Ke-Lung Shih 施克隆 |
spellingShingle |
Ke-Lung Shih 施克隆 Optimization of system parameters for APDL models Using Particle Swarm Optimization |
author_sort |
Ke-Lung Shih |
title |
Optimization of system parameters for APDL models Using Particle Swarm Optimization |
title_short |
Optimization of system parameters for APDL models Using Particle Swarm Optimization |
title_full |
Optimization of system parameters for APDL models Using Particle Swarm Optimization |
title_fullStr |
Optimization of system parameters for APDL models Using Particle Swarm Optimization |
title_full_unstemmed |
Optimization of system parameters for APDL models Using Particle Swarm Optimization |
title_sort |
optimization of system parameters for apdl models using particle swarm optimization |
publishDate |
2013 |
url |
http://ndltd.ncl.edu.tw/handle/t2c823 |
work_keys_str_mv |
AT kelungshih optimizationofsystemparametersforapdlmodelsusingparticleswarmoptimization AT shīkèlóng optimizationofsystemparametersforapdlmodelsusingparticleswarmoptimization AT kelungshih yīngyònglìziqúnyǎnsuànfǎyúapdlmóxíngzhīcānshùzuìjiāhuà AT shīkèlóng yīngyònglìziqúnyǎnsuànfǎyúapdlmóxíngzhīcānshùzuìjiāhuà |
_version_ |
1719107586272264192 |