Effects of L-amino acid oxidase of Thrichoderma harzianum ETS 323 on antagonism of Rhichotonia solani and on antibacterial activity application

博士 === 慈濟大學 === 醫學科學研究所 === 101 === Trichoderma spp. are used as biocontrol agents against phytopathogens such as Rhizoctonia solani, but their biocontrol mechanisms are not fully understood. A novel L-amino oxidase (Th-LAAO) was identified from the extracellular proteins of Trichoderma harzianum ET...

Full description

Bibliographic Details
Main Authors: Chia-Ann Yang, 楊家安
Other Authors: Kou-Cheng Pengc
Format: Others
Language:en_US
Published: 2012
Online Access:http://ndltd.ncl.edu.tw/handle/7q32h9
id ndltd-TW-101TCU05534002
record_format oai_dc
spelling ndltd-TW-101TCU055340022019-05-15T20:51:13Z http://ndltd.ncl.edu.tw/handle/7q32h9 Effects of L-amino acid oxidase of Thrichoderma harzianum ETS 323 on antagonism of Rhichotonia solani and on antibacterial activity application 左型胺基酸氧化酶在哈氏木黴菌ETS323與立枯絲菌拮抗作用中的機制及抗細菌活性的機 Chia-Ann Yang 楊家安 博士 慈濟大學 醫學科學研究所 101 Trichoderma spp. are used as biocontrol agents against phytopathogens such as Rhizoctonia solani, but their biocontrol mechanisms are not fully understood. A novel L-amino oxidase (Th-LAAO) was identified from the extracellular proteins of Trichoderma harzianum ETS 323. Here, we show a FAD-binding glycoprotein with the best substrate specificity constant for L-phenylalanine. Although the amino acid sequence of Th-LAAO revealed limited homology (16%–24%) to other LAAO members, a highly conserved FAD-binding motif,including a dinucleotide-binding motif and a GG motif, was identified in the N-terminus. The results indicate that the enzyme activity and structure of Th-LAAO are stable at pH 6 to 8. At pH 7.0, the optimum temperature for Th-LAAO was found to be 40 °C, with enzymatic activity deceasing with further increases in temperature due to thermal denaturation of the enzyme at 50 °C. Th-LAAO was shown to be a homodimeric protein, but the monomeric form was predominant when grown in the presence of deactivated Rhizoctonia solani. Furthermore, in vitro assays demonstrated that the monomeric Th-LAAO (mTh-LAAO) had an antagonistic effect against Rhizoctonia solani. The mTh-LAAO-treated R. solani exhibited hyphal lysis and apoptotic characteristics such as reactive oxygen species (ROS)accumulation. This hyphal lysis was suppressed by a mitochondria-dependent apoptosis inhibitor oligomycin while accompanied by reduction of ROS accumulation. This result suggested that the mitochondria-mediated apoptosis in Rhizoctonia solani was involved in mTh-LAAO-induced growth inhibition, which was supported by the evidence of cytocheome c release and activation of caspase 9 and caspase 3. Furthermore, the data indicated that the mTh-LAAO-induced fungal cell death was also closely interrelated with the interaction of mTh-LAAO with Rhizoctonia solan hyphal cell wall proteins. In further study, we attempted to identify the mechanism behind the antibacterial activity of Th-LAAO against Escherichia coli and Staphylococcus aureus. The results of confocal microscopy and flow cytometry indicate that Th-LAAO interact with bacteria to cause membrane permeabilization, an interaction that may be promoted by the fact that the amphipathic sequence in Th-LAAO and other cytotoxic LAAOs is located at the N-terminus. The findings of increased exogenous H2O2 production and reactive oxidative species (ROS) accumulation in Th-LAAO-treated bacteria indicate that ROS accumulation may trigger forms of cell damage, including lipid peroxidation and DNA strand breakage that results in bacterial growth inhibition. These findings further our understanding of the biological function underlying the antagonistic action of T. harzianum mTh-LAAO against fungal pathogen and provide insight into the mechanism behind the antibacterial activity of Th-LAAO. Kou-Cheng Pengc Jeng-Woei Lee 彭國証 李政偉 2012 學位論文 ; thesis 115 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 博士 === 慈濟大學 === 醫學科學研究所 === 101 === Trichoderma spp. are used as biocontrol agents against phytopathogens such as Rhizoctonia solani, but their biocontrol mechanisms are not fully understood. A novel L-amino oxidase (Th-LAAO) was identified from the extracellular proteins of Trichoderma harzianum ETS 323. Here, we show a FAD-binding glycoprotein with the best substrate specificity constant for L-phenylalanine. Although the amino acid sequence of Th-LAAO revealed limited homology (16%–24%) to other LAAO members, a highly conserved FAD-binding motif,including a dinucleotide-binding motif and a GG motif, was identified in the N-terminus. The results indicate that the enzyme activity and structure of Th-LAAO are stable at pH 6 to 8. At pH 7.0, the optimum temperature for Th-LAAO was found to be 40 °C, with enzymatic activity deceasing with further increases in temperature due to thermal denaturation of the enzyme at 50 °C. Th-LAAO was shown to be a homodimeric protein, but the monomeric form was predominant when grown in the presence of deactivated Rhizoctonia solani. Furthermore, in vitro assays demonstrated that the monomeric Th-LAAO (mTh-LAAO) had an antagonistic effect against Rhizoctonia solani. The mTh-LAAO-treated R. solani exhibited hyphal lysis and apoptotic characteristics such as reactive oxygen species (ROS)accumulation. This hyphal lysis was suppressed by a mitochondria-dependent apoptosis inhibitor oligomycin while accompanied by reduction of ROS accumulation. This result suggested that the mitochondria-mediated apoptosis in Rhizoctonia solani was involved in mTh-LAAO-induced growth inhibition, which was supported by the evidence of cytocheome c release and activation of caspase 9 and caspase 3. Furthermore, the data indicated that the mTh-LAAO-induced fungal cell death was also closely interrelated with the interaction of mTh-LAAO with Rhizoctonia solan hyphal cell wall proteins. In further study, we attempted to identify the mechanism behind the antibacterial activity of Th-LAAO against Escherichia coli and Staphylococcus aureus. The results of confocal microscopy and flow cytometry indicate that Th-LAAO interact with bacteria to cause membrane permeabilization, an interaction that may be promoted by the fact that the amphipathic sequence in Th-LAAO and other cytotoxic LAAOs is located at the N-terminus. The findings of increased exogenous H2O2 production and reactive oxidative species (ROS) accumulation in Th-LAAO-treated bacteria indicate that ROS accumulation may trigger forms of cell damage, including lipid peroxidation and DNA strand breakage that results in bacterial growth inhibition. These findings further our understanding of the biological function underlying the antagonistic action of T. harzianum mTh-LAAO against fungal pathogen and provide insight into the mechanism behind the antibacterial activity of Th-LAAO.
author2 Kou-Cheng Pengc
author_facet Kou-Cheng Pengc
Chia-Ann Yang
楊家安
author Chia-Ann Yang
楊家安
spellingShingle Chia-Ann Yang
楊家安
Effects of L-amino acid oxidase of Thrichoderma harzianum ETS 323 on antagonism of Rhichotonia solani and on antibacterial activity application
author_sort Chia-Ann Yang
title Effects of L-amino acid oxidase of Thrichoderma harzianum ETS 323 on antagonism of Rhichotonia solani and on antibacterial activity application
title_short Effects of L-amino acid oxidase of Thrichoderma harzianum ETS 323 on antagonism of Rhichotonia solani and on antibacterial activity application
title_full Effects of L-amino acid oxidase of Thrichoderma harzianum ETS 323 on antagonism of Rhichotonia solani and on antibacterial activity application
title_fullStr Effects of L-amino acid oxidase of Thrichoderma harzianum ETS 323 on antagonism of Rhichotonia solani and on antibacterial activity application
title_full_unstemmed Effects of L-amino acid oxidase of Thrichoderma harzianum ETS 323 on antagonism of Rhichotonia solani and on antibacterial activity application
title_sort effects of l-amino acid oxidase of thrichoderma harzianum ets 323 on antagonism of rhichotonia solani and on antibacterial activity application
publishDate 2012
url http://ndltd.ncl.edu.tw/handle/7q32h9
work_keys_str_mv AT chiaannyang effectsoflaminoacidoxidaseofthrichodermaharzianumets323onantagonismofrhichotoniasolaniandonantibacterialactivityapplication
AT yángjiāān effectsoflaminoacidoxidaseofthrichodermaharzianumets323onantagonismofrhichotoniasolaniandonantibacterialactivityapplication
AT chiaannyang zuǒxíngànjīsuānyǎnghuàméizàihāshìmùméijūnets323yǔlìkūsījūnjiékàngzuòyòngzhōngdejīzhìjíkàngxìjūnhuóxìngdejī
AT yángjiāān zuǒxíngànjīsuānyǎnghuàméizàihāshìmùméijūnets323yǔlìkūsījūnjiékàngzuòyòngzhōngdejīzhìjíkàngxìjūnhuóxìngdejī
_version_ 1719104955665612800