Summary: | 碩士 === 國立臺灣大學 === 物理研究所 === 101 === Boron-nitride (BN) substitutional doping is an efficient way to open a band gap in graphene. In this thesis, the formation of BN domains in graphene and their electronic structures are investigated by performing first-principles calculations. It is found that the BN-doped graphene system tends to have compact BN hexagons and domains. It is also concluded that at a certain doping level in a fixed supercell, higher numbers of B-N bonds and C-C bonds, and lower Coulomb potential energies will result in more stable monolayer boron-nitride-hybridized graphene (h-BNC) systems. In the examination of electronic structures, it is found that larger sizes of BN domains doped into graphene will induce wider band gaps and that the band gap value increases linearly with the BN concentration at low doping levels (~35%). Therefore, patching different sizes and shapes of BN domains inside graphene provides an effective way to tune band gaps for fabricating next-generation electronic devices.
|