Summary: | 碩士 === 國立臺灣師範大學 === 機電科技學系 === 101 === With the increasing downscaling of electro-optical components and the development of microelectromechanical systems (MEMS), microlens array is attracting more attention for various applications, including optical communications, image processing, lab-on-a-chip techniques, high-definition projection displays and other photonic devices. Hence, many manufacture processes for microlens have been described, such as the thermal reflow, laser micromachining, gay-scale mask, ink-jet printing and proton beam writing. The variety of microlens array can usually be employed for lighting design for improving their outcoupling efficiency or enhancing the light extraction efficiency. Compared with the conventional photolithography, a diffuser approach can be used in developing a process to fabricate the microlens array. The advantages of a diffuser include a simple process and shape control of microlens array. This study presents a simple and effective diffuser approach to fabricate a plastic microlens array with controllable shape and full fill-factor, and combined the methods of the soft lithography and plastic replication.
It can be found that the microlens array of PDMS structures is an extremely high full fill-factor. The fill-factor in this study is approximately 100%. In conclusion, the full fill-factor PDMS microlens array can be successfully fabricated by a diffuser approach. The precise shape of microlens is needed by using the well-controlled process parameters. The curves of the microlens are fitted by using sag equation. Thereupon, this study can be helpful to a new route to range of functional optical applications.
|