Summary: | 碩士 === 國立臺灣師範大學 === 化學系 === 101 === Self-assembled monolayers (SAMs) fabricate on oxide-free Si (100) in the one-cell process which combines the etching of native oxide and the fabrication of SAMs in one cell. The one-cell process use immiscible property of solutions to form two layer system – an aqueous solution of etchant and a toluene solution of precursors. First, native oxide of Si(100) was removed from surface in the down-layer of etching solution. Subsequently, the etched Si(100) was moved directly to the upper layer of the precursor solution for irradiation of white light. Without contact with air, the one-cell process effectively prevents from the oxidation of the as-etched Si surface. In this work, we employed NH4F as an etchant to produce oxide-free Si (100). The morphology of NH4F-treated of Si (100) was smoother than that that of NH4F-treated Si (111). Octadecene (ODC) was utilized to fabricate the SAMs on the oxide-free Si (100). The resulting ODC SAMs were characterized with X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), attenuated total reflectance infrared spectroscopy (ATR-IR) and water contact angle system.
According to the results, the ODC SAMs were fabricated on a oxide-free Si(100) with the one-cell process. The resistance to atmospheric oxidation of ODC SAMs is associated with the morphology of oxide-free Si (100) and the irradiation time. The ODC SAMs fabricated with the one-cell process exhibited a better resistance to oxidation under the ambient atmosphere than the ones obtained with the two-cell process.
|