Process- and Temperature-Compensated Techniques and Solar-Powered Techniques of Low-Noise Amplifiers

碩士 === 國立高雄師範大學 === 電子工程學系 === 101 === This thesis proposes the process- and temperature-compensated techniques and the solar-powered techniques of the low-noise amplifier (LNA). For process and temperature compensation, a body-bias technique is used to compensate the RF parameters of the LNA. This...

Full description

Bibliographic Details
Main Authors: Yan-Tsang Lin, 林彥滄
Other Authors: Jian-Ming Wu
Format: Others
Language:zh-TW
Published: 2013
Online Access:http://ndltd.ncl.edu.tw/handle/57648334360876518425
Description
Summary:碩士 === 國立高雄師範大學 === 電子工程學系 === 101 === This thesis proposes the process- and temperature-compensated techniques and the solar-powered techniques of the low-noise amplifier (LNA). For process and temperature compensation, a body-bias technique is used to compensate the RF parameters of the LNA. This LNA is designed and implemented using the 0.18 μm CMOS standard process. For process compensation, the variation in noise figure (NF) is reduced from 0.8 dB to 0.2 dB and the variation in gain is reduced from 5.33 dB to 0.2 dB. For temperature compensation, the variation in noise figure (NF) is reduced from 1.25 dB to 0.89 dB and the variation in gain is reduced from 1.06 dB to 0.35 dB. For solar self-powering, a 2.4 GHz LNA is designed and implemented using the 0.18 μm CMOS standard process for ZigBee applications. A solar panel with a regulator circuit directly converts solar power to the electrical power of the LNA, as required to provide green energy. Measurements of the solar-powered 2.4 GHz LNA are made, revealing that the NF is 2.91 dB, the gain is 10.89 dB, and the input-referred third-order intercept point (IIP3) is 0 dBm. A voltage of 0.6 V is supplied to the LNA and the power consumption is then 1.08 mW.