Summary: | 碩士 === 國立中央大學 === 學習與教學研究所 === 101 === Simulation based learning environment is a typical interactive learning environment. When learning with simulation, students learn concepts by observing changes, or receiving immediate feedback among multiple representations (e.g., the arrangement of data points) when they change the variable value (e.g., r value). Although it is a general viewpoint that the interactive processes have the potential benefits for learning, there is no consistent result showing its effectiveness across the past studies. Cognitive process behind the results is considered to be a possible reason for the uncertainty of the effectiveness of the interactivity under the simulation based learning environment. Nevertheless, previous empirical research had acrossed different interface (e.g., picture, animation), and different types of interactive behaviors (e.g., feedback, manipulation, & click), which might refer to mix different cognitive processes in the results Therefore, is interactivity effective for student’s learning? Maybe we should base on more consistent standpoint to make the comparation and answer this question. In this study, the researcher wants to examine which one is more important for learning between “interactivity and non-interactivity” (behavior) and “degree of interactivity” (cognition)? From the perspective of Cognitive Load Theory (CLT), the increase of interactivity might be a way to enhance germane cognitive load, which induces learners to directly invest their cognitive efforts on the most essential elements of the leaning material, and thus promotes more opportunities for getting learners involved into active genuine learning process. Therefore, it is expected that learners will produce more cognitive load but better learning performance with the increasing interactivity. In this study, single between-subject experimental design was conducted to explore this issue. The subjects were randomly assigned to “non-interactivity’’, “low-interactivity’’, and “high- interactivity” conditions. Besides, concepts about Correlation were used as the learning topic. In the results, the researcher found that for the “interactivity and non- interactivity” conditions, interactivity group had a tendency to spend more time on learning, but to spend less time on comprehension test. For the “degree of interactivity” conditions, low-interactivity group had higher cognitive load on learning process, and higher learning efficiency than high-interactivity group. Finally, the implications of the research findings and the design of simulation learning environments are discussed.
|