Development of an Automatic ECG-based Emotion Classification Algorithm

碩士 === 國立成功大學 === 電機工程學系碩博士班 === 101 === This thesis presents a real-time ECG morphology feature based R-wave detection algorithm and an automatic ECG-based emotion classification algorithm for R-wave detection and human emotion classification, respectively. At first, we adopt a musical induction me...

Full description

Bibliographic Details
Main Authors: Chien-HanHung, 洪千涵
Other Authors: Jeen-Shing Wang
Format: Others
Language:en_US
Published: 2013
Online Access:http://ndltd.ncl.edu.tw/handle/hr92t2
id ndltd-TW-101NCKU5442069
record_format oai_dc
spelling ndltd-TW-101NCKU54420692019-05-15T21:03:13Z http://ndltd.ncl.edu.tw/handle/hr92t2 Development of an Automatic ECG-based Emotion Classification Algorithm 基於心電訊號之自動情緒辨識演算法之開發 Chien-HanHung 洪千涵 碩士 國立成功大學 電機工程學系碩博士班 101 This thesis presents a real-time ECG morphology feature based R-wave detection algorithm and an automatic ECG-based emotion classification algorithm for R-wave detection and human emotion classification, respectively. At first, we adopt a musical induction method to collect participants’ ECG signals without any deliberate laboratory setting, which can induce participants’ real emotional states. Next, the proposed real-time R-wave detection algorithm is presented to detect R-waves in ECG signal based on the ECG morphological features. Afterward, we develop an automatic ECG-based emotion classification algorithm to classify human emotions elicited by listening to music. Physiological ECG features generated from time-, frequency-domain, and nonlinear analyses are utilized to find the emotion-relevant features and to correlate them with emotional states. Subsequently, we develop a sequential forward floating selection-kernel-based class separability based (SFFS-KBCS-based) feature selection algorithm and utilize the generalized discriminant analysis (GDA) to effectively select significant ECG features associated with emotions and to reduce the dimensions of the selected features, respectively. Classifications of positive/negative valence, high/low arousal, and four types of emotion (Joy, Tension, Sadness, and Peacefulness) are performed by least squares support vector machine (LS-SVM) classifiers. The results show that the sensitivity, positive predictive value, and detection error rate of the real-time R-wave detection algorithm can achieve 99.97%, 99.89%, and 0.14%, respectively, and the average delay time of the proposed algorithm is only 15.1ms. Furthermore, the correct classification rates of the positive/negative valence, high/low arousal, and four types of emotion classification tasks are 82.78%, 72.91%, and 61.52%, respectively. Keywords: real-time R-wave detection, ECG, automatic emotion classification algorithm, musical induction. Jeen-Shing Wang 王振興 2013 學位論文 ; thesis 85 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立成功大學 === 電機工程學系碩博士班 === 101 === This thesis presents a real-time ECG morphology feature based R-wave detection algorithm and an automatic ECG-based emotion classification algorithm for R-wave detection and human emotion classification, respectively. At first, we adopt a musical induction method to collect participants’ ECG signals without any deliberate laboratory setting, which can induce participants’ real emotional states. Next, the proposed real-time R-wave detection algorithm is presented to detect R-waves in ECG signal based on the ECG morphological features. Afterward, we develop an automatic ECG-based emotion classification algorithm to classify human emotions elicited by listening to music. Physiological ECG features generated from time-, frequency-domain, and nonlinear analyses are utilized to find the emotion-relevant features and to correlate them with emotional states. Subsequently, we develop a sequential forward floating selection-kernel-based class separability based (SFFS-KBCS-based) feature selection algorithm and utilize the generalized discriminant analysis (GDA) to effectively select significant ECG features associated with emotions and to reduce the dimensions of the selected features, respectively. Classifications of positive/negative valence, high/low arousal, and four types of emotion (Joy, Tension, Sadness, and Peacefulness) are performed by least squares support vector machine (LS-SVM) classifiers. The results show that the sensitivity, positive predictive value, and detection error rate of the real-time R-wave detection algorithm can achieve 99.97%, 99.89%, and 0.14%, respectively, and the average delay time of the proposed algorithm is only 15.1ms. Furthermore, the correct classification rates of the positive/negative valence, high/low arousal, and four types of emotion classification tasks are 82.78%, 72.91%, and 61.52%, respectively. Keywords: real-time R-wave detection, ECG, automatic emotion classification algorithm, musical induction.
author2 Jeen-Shing Wang
author_facet Jeen-Shing Wang
Chien-HanHung
洪千涵
author Chien-HanHung
洪千涵
spellingShingle Chien-HanHung
洪千涵
Development of an Automatic ECG-based Emotion Classification Algorithm
author_sort Chien-HanHung
title Development of an Automatic ECG-based Emotion Classification Algorithm
title_short Development of an Automatic ECG-based Emotion Classification Algorithm
title_full Development of an Automatic ECG-based Emotion Classification Algorithm
title_fullStr Development of an Automatic ECG-based Emotion Classification Algorithm
title_full_unstemmed Development of an Automatic ECG-based Emotion Classification Algorithm
title_sort development of an automatic ecg-based emotion classification algorithm
publishDate 2013
url http://ndltd.ncl.edu.tw/handle/hr92t2
work_keys_str_mv AT chienhanhung developmentofanautomaticecgbasedemotionclassificationalgorithm
AT hóngqiānhán developmentofanautomaticecgbasedemotionclassificationalgorithm
AT chienhanhung jīyúxīndiànxùnhàozhīzìdòngqíngxùbiànshíyǎnsuànfǎzhīkāifā
AT hóngqiānhán jīyúxīndiànxùnhàozhīzìdòngqíngxùbiànshíyǎnsuànfǎzhīkāifā
_version_ 1719109117454319616