Gastroesophageal Reflux Disease Diagnosis Using Hierarchical Heterogeneous Descriptor Fusion

碩士 === 國立中興大學 === 資訊科學與工程學系所 === 101 === A new computer-aided diagnosis method is proposed to diagnose gastroesophageal reflux disease (GERD) from endoscopic images of the esophageal-gastric junction. To avoid the inferences of endoscope devices and automatic camera white balance adjustment, multipl...

Full description

Bibliographic Details
Main Authors: Yan-Ting Chen, 陳彥廷
Other Authors: Chun-Rong Huang
Format: Others
Language:en_US
Published: 2013
Online Access:http://ndltd.ncl.edu.tw/handle/qchxhj
id ndltd-TW-101NCHU5394038
record_format oai_dc
spelling ndltd-TW-101NCHU53940382019-05-15T21:02:49Z http://ndltd.ncl.edu.tw/handle/qchxhj Gastroesophageal Reflux Disease Diagnosis Using Hierarchical Heterogeneous Descriptor Fusion 由內視鏡影像進行食道逆流之診斷 Yan-Ting Chen 陳彥廷 碩士 國立中興大學 資訊科學與工程學系所 101 A new computer-aided diagnosis method is proposed to diagnose gastroesophageal reflux disease (GERD) from endoscopic images of the esophageal-gastric junction. To avoid the inferences of endoscope devices and automatic camera white balance adjustment, multiple color invariant models are used to represent endoscopic images. Then, visual vocabularies are built from each color model to describe the mucosa of the esophageal-gastric junction for support vector machine training. To simultaneously consider the prediction results of each color model, a hierarchical support vector machine scheme is proposed. During validation, visual vocabularies extracted from the test endoscopic image are used as the input of the hierarchical support vector machine to diagnose GERD. As shown in the experiments, our method can automatically diagnose GERD without any manual selection of region of interest and achieve better accuracy compared to methods using only one color invariant model. Chun-Rong Huang 黃春融 2013 學位論文 ; thesis 32 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立中興大學 === 資訊科學與工程學系所 === 101 === A new computer-aided diagnosis method is proposed to diagnose gastroesophageal reflux disease (GERD) from endoscopic images of the esophageal-gastric junction. To avoid the inferences of endoscope devices and automatic camera white balance adjustment, multiple color invariant models are used to represent endoscopic images. Then, visual vocabularies are built from each color model to describe the mucosa of the esophageal-gastric junction for support vector machine training. To simultaneously consider the prediction results of each color model, a hierarchical support vector machine scheme is proposed. During validation, visual vocabularies extracted from the test endoscopic image are used as the input of the hierarchical support vector machine to diagnose GERD. As shown in the experiments, our method can automatically diagnose GERD without any manual selection of region of interest and achieve better accuracy compared to methods using only one color invariant model.
author2 Chun-Rong Huang
author_facet Chun-Rong Huang
Yan-Ting Chen
陳彥廷
author Yan-Ting Chen
陳彥廷
spellingShingle Yan-Ting Chen
陳彥廷
Gastroesophageal Reflux Disease Diagnosis Using Hierarchical Heterogeneous Descriptor Fusion
author_sort Yan-Ting Chen
title Gastroesophageal Reflux Disease Diagnosis Using Hierarchical Heterogeneous Descriptor Fusion
title_short Gastroesophageal Reflux Disease Diagnosis Using Hierarchical Heterogeneous Descriptor Fusion
title_full Gastroesophageal Reflux Disease Diagnosis Using Hierarchical Heterogeneous Descriptor Fusion
title_fullStr Gastroesophageal Reflux Disease Diagnosis Using Hierarchical Heterogeneous Descriptor Fusion
title_full_unstemmed Gastroesophageal Reflux Disease Diagnosis Using Hierarchical Heterogeneous Descriptor Fusion
title_sort gastroesophageal reflux disease diagnosis using hierarchical heterogeneous descriptor fusion
publishDate 2013
url http://ndltd.ncl.edu.tw/handle/qchxhj
work_keys_str_mv AT yantingchen gastroesophagealrefluxdiseasediagnosisusinghierarchicalheterogeneousdescriptorfusion
AT chényàntíng gastroesophagealrefluxdiseasediagnosisusinghierarchicalheterogeneousdescriptorfusion
AT yantingchen yóunèishìjìngyǐngxiàngjìnxíngshídàonìliúzhīzhěnduàn
AT chényàntíng yóunèishìjìngyǐngxiàngjìnxíngshídàonìliúzhīzhěnduàn
_version_ 1719108332355059712