On Weak Contraction Mappings

博士 === 中原大學 === 應用數學研究所 === 101 === The thesis is organized into four parts. The first part that we introduce the notions weak contraction mappings and weak contraction mappings in complete generalized metric spaces and prove two theorems which assure the existence of a periodic point for these tw...

Full description

Bibliographic Details
Main Authors: Chao-Hung Chen, 陳昭宏
Other Authors: Jin-Chirng Lee
Format: Others
Language:en_US
Published: 2013
Online Access:http://ndltd.ncl.edu.tw/handle/31149229348136983324
id ndltd-TW-101CYCU5507026
record_format oai_dc
spelling ndltd-TW-101CYCU55070262015-10-13T22:40:29Z http://ndltd.ncl.edu.tw/handle/31149229348136983324 On Weak Contraction Mappings 弱收縮映射之探討 Chao-Hung Chen 陳昭宏 博士 中原大學 應用數學研究所 101 The thesis is organized into four parts. The first part that we introduce the notions weak contraction mappings and weak contraction mappings in complete generalized metric spaces and prove two theorems which assure the existence of a periodic point for these two types of weak contraction. The second part that we study fixed point theorems for a mapping satisfying the generalized Meir –Keeler -type contractions in complete partial metric spaces. The third part that we prove two new fixed point theorems in the framework of partially ordered metric spaces. The final part that by using the stronger Meir-Keeler mapping, we introduce the concepts of the sMK-G-cyclic mappings, sMK-K-cyclic mappings and sMK-C-cyclic mappings, and then we prove some best proximity point theorems for these various types of contractions. The results of this thesis generalize and improve many recent best proximity point theorems and fixed point theorems in the literature Jin-Chirng Lee 李金城 2013 學位論文 ; thesis 83 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 博士 === 中原大學 === 應用數學研究所 === 101 === The thesis is organized into four parts. The first part that we introduce the notions weak contraction mappings and weak contraction mappings in complete generalized metric spaces and prove two theorems which assure the existence of a periodic point for these two types of weak contraction. The second part that we study fixed point theorems for a mapping satisfying the generalized Meir –Keeler -type contractions in complete partial metric spaces. The third part that we prove two new fixed point theorems in the framework of partially ordered metric spaces. The final part that by using the stronger Meir-Keeler mapping, we introduce the concepts of the sMK-G-cyclic mappings, sMK-K-cyclic mappings and sMK-C-cyclic mappings, and then we prove some best proximity point theorems for these various types of contractions. The results of this thesis generalize and improve many recent best proximity point theorems and fixed point theorems in the literature
author2 Jin-Chirng Lee
author_facet Jin-Chirng Lee
Chao-Hung Chen
陳昭宏
author Chao-Hung Chen
陳昭宏
spellingShingle Chao-Hung Chen
陳昭宏
On Weak Contraction Mappings
author_sort Chao-Hung Chen
title On Weak Contraction Mappings
title_short On Weak Contraction Mappings
title_full On Weak Contraction Mappings
title_fullStr On Weak Contraction Mappings
title_full_unstemmed On Weak Contraction Mappings
title_sort on weak contraction mappings
publishDate 2013
url http://ndltd.ncl.edu.tw/handle/31149229348136983324
work_keys_str_mv AT chaohungchen onweakcontractionmappings
AT chénzhāohóng onweakcontractionmappings
AT chaohungchen ruòshōusuōyìngshèzhītàntǎo
AT chénzhāohóng ruòshōusuōyìngshèzhītàntǎo
_version_ 1718079257957105664