Polylactic Acid Investigation on the Carbon Footprint and Toxicity by Life Cycle Assessment

碩士 === 嘉南藥理科技大學 === 環境工程與科學系 === 101 === Polylactic acid (PLA) is believed to be an green plastic, and is widely applied the products. For more realization PLA about the environmental issues by Life Cycle Assessment(LCA), this study focused on the environmental impact issues, carbon footprint, ecolo...

Full description

Bibliographic Details
Main Authors: Ming-YA, Hsieh, 謝名雅
Other Authors: Ying-Hsien, Yang
Format: Others
Language:zh-TW
Published: 2013
Online Access:http://ndltd.ncl.edu.tw/handle/85679442122971675220
Description
Summary:碩士 === 嘉南藥理科技大學 === 環境工程與科學系 === 101 === Polylactic acid (PLA) is believed to be an green plastic, and is widely applied the products. For more realization PLA about the environmental issues by Life Cycle Assessment(LCA), this study focused on the environmental impact issues, carbon footprint, ecological toxicity assessment and eco-efficiency analyses for the PLA case study. The results contain with four parts, the first part is life cycle assessment of polylactic acid; The second parts is concering with the comparisions among the different recycling models by life cycle assessment; The third parts is the carbon footprint and toxicity among PLA and traditional plastics; The last parts, the ecoefficiency comparisions of polylactic acid and traditional plastics. The results showed that:(1) The carbon footprint is 3.92 KgCO2-eq of the polylactic acid that came from the fertilizers, pesticides and transportation emissions during the planting phase, the manufacture phase is 2.66 KgCO2-eq.;(2) For the different recycling models for PLA, the wood composite mode is 0.01 KgCO2-eq, and the alkaline hydrolysis model is worst in the value of 8.67 KgCO2-eq.;(3) the recycle PLA is more friendly carbon footprint with the acidic hydrolysis treatment(3.21 KgCO2-eq.) than alkaline hydrolysis(8.67 KgCO2-eq.), that combining with the incineration treatment;(4) Polylactic acid compared to the traditional plastics, PET carbon footprint is the low with 6.46 KgCO2-eq., and PLA alkaline hydrolysis model is the most with 15.25 KgCO2-eq; the PLA ecoefficiency is not significant, the PET is the high ecoeffieiency.