On the Weighted Term Orders for Polynomial Rings
碩士 === 國立中正大學 === 數學研究所 === 102 === In this thesis we will give a constructive way to show that every term order on a polynomial ring is of weighted type.
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2013
|
Online Access: | http://ndltd.ncl.edu.tw/handle/63957663392880627498 |
id |
ndltd-TW-101CCU00479005 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-101CCU004790052015-10-13T22:46:19Z http://ndltd.ncl.edu.tw/handle/63957663392880627498 On the Weighted Term Orders for Polynomial Rings 多項式環中的加權單項序 Zhan, He-Xian 詹和憲 碩士 國立中正大學 數學研究所 102 In this thesis we will give a constructive way to show that every term order on a polynomial ring is of weighted type. Chiang-Hsieh Hung-Jen 江謝宏任 2013 學位論文 ; thesis 28 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立中正大學 === 數學研究所 === 102 === In this thesis we will give a constructive way to show that every term order on a
polynomial ring is of weighted type.
|
author2 |
Chiang-Hsieh Hung-Jen |
author_facet |
Chiang-Hsieh Hung-Jen Zhan, He-Xian 詹和憲 |
author |
Zhan, He-Xian 詹和憲 |
spellingShingle |
Zhan, He-Xian 詹和憲 On the Weighted Term Orders for Polynomial Rings |
author_sort |
Zhan, He-Xian |
title |
On the Weighted Term Orders for Polynomial Rings |
title_short |
On the Weighted Term Orders for Polynomial Rings |
title_full |
On the Weighted Term Orders for Polynomial Rings |
title_fullStr |
On the Weighted Term Orders for Polynomial Rings |
title_full_unstemmed |
On the Weighted Term Orders for Polynomial Rings |
title_sort |
on the weighted term orders for polynomial rings |
publishDate |
2013 |
url |
http://ndltd.ncl.edu.tw/handle/63957663392880627498 |
work_keys_str_mv |
AT zhanhexian ontheweightedtermordersforpolynomialrings AT zhānhéxiàn ontheweightedtermordersforpolynomialrings AT zhanhexian duōxiàngshìhuánzhōngdejiāquándānxiàngxù AT zhānhéxiàn duōxiàngshìhuánzhōngdejiāquándānxiàngxù |
_version_ |
1718080486155223040 |