New Heuristics for the Minimum 3-Hitting Set Problem

碩士 === 國立中正大學 === 資訊工程研究所 === 101 === Let C = {C1,C2, . . . ,Cm} be a collection of subsets of a finite set S. A hitting set D is a subset of S such that for i = 1, 2, . . . ,m, |D ∩ Ci| ≥ 1. An instance (S,C) is an input of the Minimum d-Hitting Set problem if |Ci| ≤ d for 1 ≤ i ≤ m. The Minimum d...

Full description

Bibliographic Details
Main Authors: Kai-Lun Hsiao, 蕭凱倫
Other Authors: Maw-Shang Chang
Format: Others
Language:en_US
Published: 2013
Online Access:http://ndltd.ncl.edu.tw/handle/53409143201541878157
id ndltd-TW-101CCU00392031
record_format oai_dc
spelling ndltd-TW-101CCU003920312015-10-13T22:12:38Z http://ndltd.ncl.edu.tw/handle/53409143201541878157 New Heuristics for the Minimum 3-Hitting Set Problem 最小三命中集合問題之新啟發式演算法設計與分析 Kai-Lun Hsiao 蕭凱倫 碩士 國立中正大學 資訊工程研究所 101 Let C = {C1,C2, . . . ,Cm} be a collection of subsets of a finite set S. A hitting set D is a subset of S such that for i = 1, 2, . . . ,m, |D ∩ Ci| ≥ 1. An instance (S,C) is an input of the Minimum d-Hitting Set problem if |Ci| ≤ d for 1 ≤ i ≤ m. The Minimum d-Hitting Set problem is NP-complete for d ≥ 2. In this thesis, we design three heuristic algorithms for the Minimum 3-Hitting Set (Min 3-hs) problem and implement them. We compare the solutions found by the heuristic algorithms. Moreover, we implement an exact algorithm based on the algorithm given by Wahlstr¨om [25] for the Min 3-hs problem. We take the solutions found by our heuristic algorithms as an initial upper bound in the exact algorithm. We design a data structure to speedup the exact algorithm for the Min 3-hs problem. We compare the running time of the exact algorithm for the Min 3-hs with the commercial optimization software, IBM ILOG CPLEX Optimizer. Maw-Shang Chang Bang Ye Wu 張貿翔 吳邦一 2013 學位論文 ; thesis 45 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立中正大學 === 資訊工程研究所 === 101 === Let C = {C1,C2, . . . ,Cm} be a collection of subsets of a finite set S. A hitting set D is a subset of S such that for i = 1, 2, . . . ,m, |D ∩ Ci| ≥ 1. An instance (S,C) is an input of the Minimum d-Hitting Set problem if |Ci| ≤ d for 1 ≤ i ≤ m. The Minimum d-Hitting Set problem is NP-complete for d ≥ 2. In this thesis, we design three heuristic algorithms for the Minimum 3-Hitting Set (Min 3-hs) problem and implement them. We compare the solutions found by the heuristic algorithms. Moreover, we implement an exact algorithm based on the algorithm given by Wahlstr¨om [25] for the Min 3-hs problem. We take the solutions found by our heuristic algorithms as an initial upper bound in the exact algorithm. We design a data structure to speedup the exact algorithm for the Min 3-hs problem. We compare the running time of the exact algorithm for the Min 3-hs with the commercial optimization software, IBM ILOG CPLEX Optimizer.
author2 Maw-Shang Chang
author_facet Maw-Shang Chang
Kai-Lun Hsiao
蕭凱倫
author Kai-Lun Hsiao
蕭凱倫
spellingShingle Kai-Lun Hsiao
蕭凱倫
New Heuristics for the Minimum 3-Hitting Set Problem
author_sort Kai-Lun Hsiao
title New Heuristics for the Minimum 3-Hitting Set Problem
title_short New Heuristics for the Minimum 3-Hitting Set Problem
title_full New Heuristics for the Minimum 3-Hitting Set Problem
title_fullStr New Heuristics for the Minimum 3-Hitting Set Problem
title_full_unstemmed New Heuristics for the Minimum 3-Hitting Set Problem
title_sort new heuristics for the minimum 3-hitting set problem
publishDate 2013
url http://ndltd.ncl.edu.tw/handle/53409143201541878157
work_keys_str_mv AT kailunhsiao newheuristicsfortheminimum3hittingsetproblem
AT xiāokǎilún newheuristicsfortheminimum3hittingsetproblem
AT kailunhsiao zuìxiǎosānmìngzhōngjíhéwèntízhīxīnqǐfāshìyǎnsuànfǎshèjìyǔfēnxī
AT xiāokǎilún zuìxiǎosānmìngzhōngjíhéwèntízhīxīnqǐfāshìyǎnsuànfǎshèjìyǔfēnxī
_version_ 1718074340461772800