Analysis of HCRF-based modeling for a 1000-speakers identification task
碩士 === 元智大學 === 通訊工程學系 === 100 === In this thesis, we applied the Hidden Conditional Random Fields to a 1000-speakers identification task and compared the performance and computation cost of HCRF with the traditional Hidden Markov Models (HMMs). The experimental results indicate that HCRF models con...
Main Authors: | Chia-Hung Tseng, 曾家宏 |
---|---|
Other Authors: | 洪維廷 |
Format: | Others |
Language: | zh-TW |
Online Access: | http://ndltd.ncl.edu.tw/handle/68782005443768534631 |
Similar Items
-
Speaker Identification Using Discriminative Adapted HCRF models
by: Wei-Chen Liu, et al.
Published: (2011) -
Retrieval of Sediment Fill Factor by Inversion of a Modified Hapke Model Applied to Sampled HCRF from Airborne and Satellite Imagery
by: Rehman S. Eon, et al.
Published: (2018-11-01) -
To Implement Speaker Identification With FPGA
by: Chun-Hung Lin, et al.
Published: (2009) -
Synthèse et caractérisation d'enchaînements de mimes peptidiques triés par modélisation moléculaire : <br />application à la synthèse d'analogues du hCRF
by: Raynal, Nicolas
Published: (2002) -
The allocation of self-similar structures in voice signals for speaker identification tasks
by: Yana Byelozorova
Published: (2017-05-01)