Laplacian Spectra of n-Deltahedra (n ≤ 14)

碩士 === 亞洲大學 === 資訊工程學系碩士班 === 100 === We use a novel approach to construct n-deltahedra (n ≤ 14). Solving two Diophantine equations, we obtain vertex sets of deltahedra that may be either planar or non-planar graphs. By using recursive processes we construct planar graphs of deltahedra. Also, by usi...

Full description

Bibliographic Details
Main Authors: Jun-En Chien, 錢君恩
Other Authors: Keh-Ming Lu
Format: Others
Language:zh-TW
Published: 2012
Online Access:http://ndltd.ncl.edu.tw/handle/80287544075324449877
id ndltd-TW-100THMU0396013
record_format oai_dc
spelling ndltd-TW-100THMU03960132015-10-13T21:01:54Z http://ndltd.ncl.edu.tw/handle/80287544075324449877 Laplacian Spectra of n-Deltahedra (n ≤ 14) 不多於14面三角面多面體的拉普拉斯譜 Jun-En Chien 錢君恩 碩士 亞洲大學 資訊工程學系碩士班 100 We use a novel approach to construct n-deltahedra (n ≤ 14). Solving two Diophantine equations, we obtain vertex sets of deltahedra that may be either planar or non-planar graphs. By using recursive processes we construct planar graphs of deltahedra. Also, by using K5 or K3,3 we build non-planar graphs. We then construct Laplacian matrix of order m and obtain the spectra, 0 = λ1 ≤ λ2 ≤ … ≤ λm of n-deltahedra, n = 4, 6, 8, 10, 12, and 14–deltahedra. We found the interesting properties of λm = m, and of the second smallest eigenvalue λ2. We also show that the details of the complement of graph, its eigenvalues, λ1 = 0, and the eigenvalues of the complement of graph, λi = m – λm-i+2, the eigenvalues of original graph. Keh-Ming Lu Hsing-Chung Chen 呂克明 陳興忠 2012 學位論文 ; thesis 120 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 亞洲大學 === 資訊工程學系碩士班 === 100 === We use a novel approach to construct n-deltahedra (n ≤ 14). Solving two Diophantine equations, we obtain vertex sets of deltahedra that may be either planar or non-planar graphs. By using recursive processes we construct planar graphs of deltahedra. Also, by using K5 or K3,3 we build non-planar graphs. We then construct Laplacian matrix of order m and obtain the spectra, 0 = λ1 ≤ λ2 ≤ … ≤ λm of n-deltahedra, n = 4, 6, 8, 10, 12, and 14–deltahedra. We found the interesting properties of λm = m, and of the second smallest eigenvalue λ2. We also show that the details of the complement of graph, its eigenvalues, λ1 = 0, and the eigenvalues of the complement of graph, λi = m – λm-i+2, the eigenvalues of original graph.
author2 Keh-Ming Lu
author_facet Keh-Ming Lu
Jun-En Chien
錢君恩
author Jun-En Chien
錢君恩
spellingShingle Jun-En Chien
錢君恩
Laplacian Spectra of n-Deltahedra (n ≤ 14)
author_sort Jun-En Chien
title Laplacian Spectra of n-Deltahedra (n ≤ 14)
title_short Laplacian Spectra of n-Deltahedra (n ≤ 14)
title_full Laplacian Spectra of n-Deltahedra (n ≤ 14)
title_fullStr Laplacian Spectra of n-Deltahedra (n ≤ 14)
title_full_unstemmed Laplacian Spectra of n-Deltahedra (n ≤ 14)
title_sort laplacian spectra of n-deltahedra (n ≤ 14)
publishDate 2012
url http://ndltd.ncl.edu.tw/handle/80287544075324449877
work_keys_str_mv AT junenchien laplacianspectraofndeltahedran14
AT qiánjūnēn laplacianspectraofndeltahedran14
AT junenchien bùduōyú14miànsānjiǎomiànduōmiàntǐdelāpǔlāsīpǔ
AT qiánjūnēn bùduōyú14miànsānjiǎomiànduōmiàntǐdelāpǔlāsīpǔ
_version_ 1718054286898757632