Computational Study of RNCC(R=H,F,C1,Br,CN,NH2,CH3) Radicals Reaction with NO

碩士 === 中國文化大學 === 化學系應用化學碩士班 === 100 === There are two major themes in this thesis. I. Computational Study of RNCC (R =H, F, Cl, Br, CN, NH2, CH3) Radicals Reaction with NO. We carried out a computational approach of radical reactions of NO + RNCC (R = H, F, Cl, Br, CN, NH2, CH3) to study how the su...

Full description

Bibliographic Details
Main Authors: Hui-Wen Hsu, 許惠雯
Other Authors: Hui-Lung Chen
Format: Others
Language:zh-TW
Published: 2011
Online Access:http://ndltd.ncl.edu.tw/handle/40993059160012417910
Description
Summary:碩士 === 中國文化大學 === 化學系應用化學碩士班 === 100 === There are two major themes in this thesis. I. Computational Study of RNCC (R =H, F, Cl, Br, CN, NH2, CH3) Radicals Reaction with NO. We carried out a computational approach of radical reactions of NO + RNCC (R = H, F, Cl, Br, CN, NH2, CH3) to study how the substituted group can influence their corresponding energy barriers. The species involved have been optimized at the B3LYP/6-311++G(3df,2p) level. From our previous work of HNCC + NO reaction, our calculated results indicate that the favorable pathways are the formation of RNN + CCO (P6) and RNC + CNO (P12). Our calculated results clearly show that if the substituted RNCC are electron donating groups (for R = NH2 and CH3 cases), their corresponding barrier heights for transition states will be substantially decreased; while the electron withdrawing groups (for R = H, F, Cl, Br, CN cases), their corresponding barrier heights for transition states will be substantially increased. The possible explanations for the decreased and/or increased energy barriers of the substituted RNCC are also analyzed in this article. II. Quantum-Chemical Calculations on Reaction Mechanisms of B with N2O. The boron possesses some specific properties (metalloid non-metal element) and its electronic configuration is ns2np1, it can accept electron from another donor species. Our purpose of this study is to find the possible reactants which may react with NOx to form the stable product such as N2 which is not harmful to our environment. We used the same method with our first part, but their single-point energies are further refined by the CCSD(T)/aug-cc-PVQZ//B3LYP/6-311++G(3df,2p) method. From our calculated results, it is found that the favorable pathways are the formation of N2 + BO (P1) and BN + NO (P2).