Change of Brain Glucose Metabolic Activity in Spared Nerve Injury Neuropathic Pain Rat

碩士 === 國立臺灣大學 === 動物學研究所 === 100 === Neuropathic pain is triggered by lesions in the somatosensory nervous system. Pain occurs spontaneously and responses to noxious and innocuous stimuli are pathologically amplified. Neural activity in supraspinal centers play an important role in the modulation...

Full description

Bibliographic Details
Main Authors: Yu-Hsin Huang, 黃郁昕
Other Authors: 嚴震東
Format: Others
Language:zh-TW
Published: 2012
Online Access:http://ndltd.ncl.edu.tw/handle/56046145031056640398
id ndltd-TW-100NTU05312005
record_format oai_dc
spelling ndltd-TW-100NTU053120052016-04-04T04:17:30Z http://ndltd.ncl.edu.tw/handle/56046145031056640398 Change of Brain Glucose Metabolic Activity in Spared Nerve Injury Neuropathic Pain Rat 坐骨神經分支選擇結紮切斷神經性疼痛模式大鼠之腦葡萄糖代謝改變之研究 Yu-Hsin Huang 黃郁昕 碩士 國立臺灣大學 動物學研究所 100 Neuropathic pain is triggered by lesions in the somatosensory nervous system. Pain occurs spontaneously and responses to noxious and innocuous stimuli are pathologically amplified. Neural activity in supraspinal centers play an important role in the modulation of pain behavior in neuropathic pain, but the precise mechanism underlying are not fully understood. In this study, we combined behavioural test with positron emission tomography (PET), using 18- fluorode-oxyglucose (18-FDG) as a tracer, to investigate the change of brain glucose metabolic activity in the spared nerve injury (SNI) model of neuropathic pain of the rat. Two major branches of the sciatic nerve were transected under anesthesia condition. After SNI surgery, the rats displayed spontaneous pain behavior, mechanical allodynia and thermal hyperalgesia behavior lasting at least 4 weeks. In PET study of spontaneous paw lifting, glucose metabolic activity in SNI condition was significantly increased in contralateral posterior insular cortex (PIC) compared to pre-surgery control, and significantly increased in septum and paraventricular thalamic nucleus (PVA) compared to sham control. And the glucose metabolic activity of insular cortex correlated linearly with the magnitude of spontaneous paw lifting. In PET study of allodynia, 6 g vonFrey hair was used to stimulus the paw pad of the affected hindlimb. Glucose metabolic activity change in SNI condition was significantly increased in bilateral primary sensory cortex (S1), contralateral secondary sensory cortex (S2), contralateral primary motor cortex (M1), ipsilateral secondary motor cortex (M2), contralateral rostral agranular insular cortex (RAIC),posterior insular cortex (PIC), hypothalamus, mediodorsal nucleus (MD) of thalamus and cerebellum compared to pre-surgery control. The data suggest that there are many brain areas involved in neuropathic pain, and insular cortex may play an important role in spontaneous pain condition. 嚴震東 2012 學位論文 ; thesis 66 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立臺灣大學 === 動物學研究所 === 100 === Neuropathic pain is triggered by lesions in the somatosensory nervous system. Pain occurs spontaneously and responses to noxious and innocuous stimuli are pathologically amplified. Neural activity in supraspinal centers play an important role in the modulation of pain behavior in neuropathic pain, but the precise mechanism underlying are not fully understood. In this study, we combined behavioural test with positron emission tomography (PET), using 18- fluorode-oxyglucose (18-FDG) as a tracer, to investigate the change of brain glucose metabolic activity in the spared nerve injury (SNI) model of neuropathic pain of the rat. Two major branches of the sciatic nerve were transected under anesthesia condition. After SNI surgery, the rats displayed spontaneous pain behavior, mechanical allodynia and thermal hyperalgesia behavior lasting at least 4 weeks. In PET study of spontaneous paw lifting, glucose metabolic activity in SNI condition was significantly increased in contralateral posterior insular cortex (PIC) compared to pre-surgery control, and significantly increased in septum and paraventricular thalamic nucleus (PVA) compared to sham control. And the glucose metabolic activity of insular cortex correlated linearly with the magnitude of spontaneous paw lifting. In PET study of allodynia, 6 g vonFrey hair was used to stimulus the paw pad of the affected hindlimb. Glucose metabolic activity change in SNI condition was significantly increased in bilateral primary sensory cortex (S1), contralateral secondary sensory cortex (S2), contralateral primary motor cortex (M1), ipsilateral secondary motor cortex (M2), contralateral rostral agranular insular cortex (RAIC),posterior insular cortex (PIC), hypothalamus, mediodorsal nucleus (MD) of thalamus and cerebellum compared to pre-surgery control. The data suggest that there are many brain areas involved in neuropathic pain, and insular cortex may play an important role in spontaneous pain condition.
author2 嚴震東
author_facet 嚴震東
Yu-Hsin Huang
黃郁昕
author Yu-Hsin Huang
黃郁昕
spellingShingle Yu-Hsin Huang
黃郁昕
Change of Brain Glucose Metabolic Activity in Spared Nerve Injury Neuropathic Pain Rat
author_sort Yu-Hsin Huang
title Change of Brain Glucose Metabolic Activity in Spared Nerve Injury Neuropathic Pain Rat
title_short Change of Brain Glucose Metabolic Activity in Spared Nerve Injury Neuropathic Pain Rat
title_full Change of Brain Glucose Metabolic Activity in Spared Nerve Injury Neuropathic Pain Rat
title_fullStr Change of Brain Glucose Metabolic Activity in Spared Nerve Injury Neuropathic Pain Rat
title_full_unstemmed Change of Brain Glucose Metabolic Activity in Spared Nerve Injury Neuropathic Pain Rat
title_sort change of brain glucose metabolic activity in spared nerve injury neuropathic pain rat
publishDate 2012
url http://ndltd.ncl.edu.tw/handle/56046145031056640398
work_keys_str_mv AT yuhsinhuang changeofbrainglucosemetabolicactivityinsparednerveinjuryneuropathicpainrat
AT huángyùxīn changeofbrainglucosemetabolicactivityinsparednerveinjuryneuropathicpainrat
AT yuhsinhuang zuògǔshénjīngfēnzhīxuǎnzéjiézāqièduànshénjīngxìngténgtòngmóshìdàshǔzhīnǎopútáotángdàixiègǎibiànzhīyánjiū
AT huángyùxīn zuògǔshénjīngfēnzhīxuǎnzéjiézāqièduànshénjīngxìngténgtòngmóshìdàshǔzhīnǎopútáotángdàixiègǎibiànzhīyánjiū
_version_ 1718215621574918144