Time-Delay Integration Readout with Adjacent Pixel Signal Transfer for CMOS Image Sensor

碩士 === 國立清華大學 === 電機工程學系 === 100 === In the thesis, a time delay and integration (TDI) structure for CMOS image sensor (CIS) with adjacent pixel signal transfer (APST) is presented. The CCD-like TDI function is achieved in CIS by proposed APST without additional in-pixel device and routing effort. T...

Full description

Bibliographic Details
Main Authors: Cheng, Kuo-Wei, 鄭國韋
Other Authors: Hsieh, Chih-Cheng
Format: Others
Published: 2012
Online Access:http://ndltd.ncl.edu.tw/handle/97226898315482007337
id ndltd-TW-100NTHU5442060
record_format oai_dc
spelling ndltd-TW-100NTHU54420602015-10-13T21:06:55Z http://ndltd.ncl.edu.tw/handle/97226898315482007337 Time-Delay Integration Readout with Adjacent Pixel Signal Transfer for CMOS Image Sensor 應用於互補式金屬氧化物半導體影像感測器以毗連像素傳遞技術讀出之時間延遲積分電路架構 Cheng, Kuo-Wei 鄭國韋 碩士 國立清華大學 電機工程學系 100 In the thesis, a time delay and integration (TDI) structure for CMOS image sensor (CIS) with adjacent pixel signal transfer (APST) is presented. The CCD-like TDI function is achieved in CIS by proposed APST without additional in-pixel device and routing effort. The in-pixel integrated signal is transferred to adjacent pixel and summed up by an off-pixel column-shared unity-gain buffer. There are several features of the proposed TDI structure. First, due to the column-shared unity-gain buffer utilized to transfer and readout signal, the power consumption and area occupancy are reduced and minimized greatly. Second, the proposed circuit has the advantage of CCD such as the ease of the summing signals with basic 3T APS pixel. There are proposed chips which are designed to compare and verify TDI function. A 128x6 APST TDI sensor with 6x6μm2 pixel size has been designed and fabricated in TSMC0.18μm 1P6M CIS technology providing 6 TDI stages with fill factor of 23.1%. The TDI function and the superior performance have been verified by experimental measurement with 3.3V power supply. It achieves a SNR improvement of 7dB with 6 TDI stages, a PRNU of 5.2%, and a low power consumption of 4.43uW/column which provides an optimized solution for remote sensing. Thanks to the column-shared op-amp adopted in this thesis, the chip size is minimized to 1.7mm x 1.3mm, and the transfer efficiency is also improved up to 99.6%. A 128x16 revised APST TDI sensor with 6x6μm2 pixel size has been designed and fabricated in TSMC0.18μm 1P6M CIS technology providing 16 TDI stages. The TDI function and the superior performance have been verified by experimental measurement with 3.3V power supply. It achieves a SNR improvement of 13dB with 16 TDI stages, a PRNU of 5.9%, and a low power consumption of 4.89uW/column. Thanks to the column-shared op-amp adopted in this thesis, the chip size is minimized to 1.7mm x 1.3mm. Hsieh, Chih-Cheng 謝志成 2012 學位論文 ; thesis 98
collection NDLTD
format Others
sources NDLTD
description 碩士 === 國立清華大學 === 電機工程學系 === 100 === In the thesis, a time delay and integration (TDI) structure for CMOS image sensor (CIS) with adjacent pixel signal transfer (APST) is presented. The CCD-like TDI function is achieved in CIS by proposed APST without additional in-pixel device and routing effort. The in-pixel integrated signal is transferred to adjacent pixel and summed up by an off-pixel column-shared unity-gain buffer. There are several features of the proposed TDI structure. First, due to the column-shared unity-gain buffer utilized to transfer and readout signal, the power consumption and area occupancy are reduced and minimized greatly. Second, the proposed circuit has the advantage of CCD such as the ease of the summing signals with basic 3T APS pixel. There are proposed chips which are designed to compare and verify TDI function. A 128x6 APST TDI sensor with 6x6μm2 pixel size has been designed and fabricated in TSMC0.18μm 1P6M CIS technology providing 6 TDI stages with fill factor of 23.1%. The TDI function and the superior performance have been verified by experimental measurement with 3.3V power supply. It achieves a SNR improvement of 7dB with 6 TDI stages, a PRNU of 5.2%, and a low power consumption of 4.43uW/column which provides an optimized solution for remote sensing. Thanks to the column-shared op-amp adopted in this thesis, the chip size is minimized to 1.7mm x 1.3mm, and the transfer efficiency is also improved up to 99.6%. A 128x16 revised APST TDI sensor with 6x6μm2 pixel size has been designed and fabricated in TSMC0.18μm 1P6M CIS technology providing 16 TDI stages. The TDI function and the superior performance have been verified by experimental measurement with 3.3V power supply. It achieves a SNR improvement of 13dB with 16 TDI stages, a PRNU of 5.9%, and a low power consumption of 4.89uW/column. Thanks to the column-shared op-amp adopted in this thesis, the chip size is minimized to 1.7mm x 1.3mm.
author2 Hsieh, Chih-Cheng
author_facet Hsieh, Chih-Cheng
Cheng, Kuo-Wei
鄭國韋
author Cheng, Kuo-Wei
鄭國韋
spellingShingle Cheng, Kuo-Wei
鄭國韋
Time-Delay Integration Readout with Adjacent Pixel Signal Transfer for CMOS Image Sensor
author_sort Cheng, Kuo-Wei
title Time-Delay Integration Readout with Adjacent Pixel Signal Transfer for CMOS Image Sensor
title_short Time-Delay Integration Readout with Adjacent Pixel Signal Transfer for CMOS Image Sensor
title_full Time-Delay Integration Readout with Adjacent Pixel Signal Transfer for CMOS Image Sensor
title_fullStr Time-Delay Integration Readout with Adjacent Pixel Signal Transfer for CMOS Image Sensor
title_full_unstemmed Time-Delay Integration Readout with Adjacent Pixel Signal Transfer for CMOS Image Sensor
title_sort time-delay integration readout with adjacent pixel signal transfer for cmos image sensor
publishDate 2012
url http://ndltd.ncl.edu.tw/handle/97226898315482007337
work_keys_str_mv AT chengkuowei timedelayintegrationreadoutwithadjacentpixelsignaltransferforcmosimagesensor
AT zhèngguówéi timedelayintegrationreadoutwithadjacentpixelsignaltransferforcmosimagesensor
AT chengkuowei yīngyòngyúhùbǔshìjīnshǔyǎnghuàwùbàndǎotǐyǐngxiànggǎncèqìyǐpíliánxiàngsùchuándìjìshùdúchūzhīshíjiānyánchíjīfēndiànlùjiàgòu
AT zhèngguówéi yīngyòngyúhùbǔshìjīnshǔyǎnghuàwùbàndǎotǐyǐngxiànggǎncèqìyǐpíliánxiàngsùchuándìjìshùdúchūzhīshíjiānyánchíjīfēndiànlùjiàgòu
_version_ 1718055488563707904