Interface engineering between high-κ dielectrics and III-V high mobility channel materials for passivation enabling the technology beyond Si CMOS

博士 === 國立清華大學 === 材料科學工程學系 === 100 === The High-κ/Metal-Gate plus III-V high mobility channel materials is regarded as a urgent issue for achieving high performance and low power dissipation complementary metal-oxide-semiconductor (CMOS) technology beyond 15 nm node. A combination of electrical, che...

Full description

Bibliographic Details
Main Authors: Chang, Pen, 張翔筆
Other Authors: Huang, Tsung-Shiew
Format: Others
Language:zh-TW
Published: 2011
Online Access:http://ndltd.ncl.edu.tw/handle/26050156900427811103
Description
Summary:博士 === 國立清華大學 === 材料科學工程學系 === 100 === The High-κ/Metal-Gate plus III-V high mobility channel materials is regarded as a urgent issue for achieving high performance and low power dissipation complementary metal-oxide-semiconductor (CMOS) technology beyond 15 nm node. A combination of electrical, chemical, and structural characterization methods to evaluate the MOS interface passivation quality. The interface engineering of in-situ directly deposited not only rare-earth oxide (REOs) but also HfO2-based high-κ dielectrics on III-V surface exhibited the successful passivation, in terms of low interfacial density of states (Dit) below 10e12 eV-1cm-2 without midgap peak, low equivalent oxide thickness (EOT) below 1 nm, low leakage current, both conduction band offset (ΔEc) and valence band offset (ΔEv) are larger than 1.5 eV, and truly high thermal stability higher than 800 oC. Moreover, high performance of self-aligned gate first inversion-channel MOS field-effect-transistors (MOSFETs) have achieved steep subthreshold swing (SS) value below 100 mV/dec, a maximum drain current (Id,max) of 1.5 mA/μm, a maximum transconductance (Gm) of 0.77 mS/μm, and a peak field-effect mobility (μFE) of 2100 cm2/Vs. This work suffices the key for realizing ultimately scaled devices with really high performance.