Design and Implementation of One-time Implantable Spinal Cord Stimulation System

博士 === 國立中山大學 === 電機工程學系研究所 === 100 === A prototype of a one-time implantable spinal cord stimulation (SCS) system is presented in this thesis. A pair of inductive coils is used to achieve wireless power transmission and bidirectional communication. A rechargeable Li-ion battery is used to extend th...

Full description

Bibliographic Details
Main Authors: Chia-Hao Hsu, 許家豪
Other Authors: Chua-Chin Wang
Format: Others
Language:en_US
Published: 2012
Online Access:http://ndltd.ncl.edu.tw/handle/74412033698366025855
Description
Summary:博士 === 國立中山大學 === 電機工程學系研究所 === 100 === A prototype of a one-time implantable spinal cord stimulation (SCS) system is presented in this thesis. A pair of inductive coils is used to achieve wireless power transmission and bidirectional communication. A rechargeable Li-ion battery is used to extend the lifetime of the implanted SCS device. Therefore, the number of the battery replacement surgery could be reduced such that one-time implantation is feasible. Besides, the proposed system on chip (SOC) controller and many discretes are integrated on a printed circuit board (PCB). The size of the proposed SCS device is competitive compared to the currently commercial products. The proposed SOC controller adopts a dual supply voltage scheme to reduce power consumption. The proposed SCS system employs an amplitude-shift keying (ASK) technique to carry out the data modulation and power transmission. One of the critical factors to affect efficiency of ASK-based wireless power transmission is the oscillating frequency accuracy. A ROM-less direct digital frequency synthesizer (DDFS) is presented in this thesis to fulfill such a high accuracy demand. Since the supply voltages of the discretes are diversified on a system PCB, many level converters are needed to translate different signal output voltage levels. To resolve above problem, the chip, then, must be redesigned to meet the various voltage level requirement, or added level convertors among the SOC and the discretes. Obviously, it will cause a lot of cost. A wide-range I/O buffer, thus, is proposed to resolve the compatibility problem caused by different supply voltages of discretes.