Recommending Travel Threads Based on Information Need Model

碩士 === 國立中山大學 === 資訊管理學系研究所 === 100 === Recommendation techniques are developed to discover user’s real information need among large amounts of information. Recommendation systems help users filter out information and attempt to present those similar items according to user’s taste...

Full description

Bibliographic Details
Main Authors: Po-ling Chen, 陳柏伶
Other Authors: San-Yih Hwang
Format: Others
Language:en_US
Published: 2012
Online Access:http://ndltd.ncl.edu.tw/handle/53239987372283131768
id ndltd-TW-100NSYS5396051
record_format oai_dc
spelling ndltd-TW-100NSYS53960512015-10-13T21:22:19Z http://ndltd.ncl.edu.tw/handle/53239987372283131768 Recommending Travel Threads Based on Information Need Model 根據資訊需求模式進行旅遊文章的推薦 Po-ling Chen 陳柏伶 碩士 國立中山大學 資訊管理學系研究所 100 Recommendation techniques are developed to discover user’s real information need among large amounts of information. Recommendation systems help users filter out information and attempt to present those similar items according to user’s tastes. In our work, we focus on discussion threads recommendation in the tourism domain. We assume that when users have traveling information need, they will try to search related information on the websites. In addition to browsing others suggestions and opinions, users are allowed to express their need as a question. Hence, we focus on recommending users previous discussion threads that may provide good answers to the users’ questions by considering the question input as well as their browsing records. We propose a model, which consists of four perspectives: goal similarity, content similarity, freshness and quality. To validate and the effectiveness of our model on recommendation performance, we collected 14348 threads from TripAdvisor.com, the largest travel website, and recruited ten volunteers, who have interests in the tourism, to verify our approach. The four perspectives are utilized by two methods. The first is Question-based method, which makes use of content similarity, freshness and quality and the second is Session-based method, which involves goal similarity. We also integrate the two methods into a hybrid method. The experiment results show that the hybrid method generally has better performance than the other two methods. San-Yih Hwang 黃三益 2012 學位論文 ; thesis 54 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立中山大學 === 資訊管理學系研究所 === 100 === Recommendation techniques are developed to discover user’s real information need among large amounts of information. Recommendation systems help users filter out information and attempt to present those similar items according to user’s tastes. In our work, we focus on discussion threads recommendation in the tourism domain. We assume that when users have traveling information need, they will try to search related information on the websites. In addition to browsing others suggestions and opinions, users are allowed to express their need as a question. Hence, we focus on recommending users previous discussion threads that may provide good answers to the users’ questions by considering the question input as well as their browsing records. We propose a model, which consists of four perspectives: goal similarity, content similarity, freshness and quality. To validate and the effectiveness of our model on recommendation performance, we collected 14348 threads from TripAdvisor.com, the largest travel website, and recruited ten volunteers, who have interests in the tourism, to verify our approach. The four perspectives are utilized by two methods. The first is Question-based method, which makes use of content similarity, freshness and quality and the second is Session-based method, which involves goal similarity. We also integrate the two methods into a hybrid method. The experiment results show that the hybrid method generally has better performance than the other two methods.
author2 San-Yih Hwang
author_facet San-Yih Hwang
Po-ling Chen
陳柏伶
author Po-ling Chen
陳柏伶
spellingShingle Po-ling Chen
陳柏伶
Recommending Travel Threads Based on Information Need Model
author_sort Po-ling Chen
title Recommending Travel Threads Based on Information Need Model
title_short Recommending Travel Threads Based on Information Need Model
title_full Recommending Travel Threads Based on Information Need Model
title_fullStr Recommending Travel Threads Based on Information Need Model
title_full_unstemmed Recommending Travel Threads Based on Information Need Model
title_sort recommending travel threads based on information need model
publishDate 2012
url http://ndltd.ncl.edu.tw/handle/53239987372283131768
work_keys_str_mv AT polingchen recommendingtravelthreadsbasedoninformationneedmodel
AT chénbǎilíng recommendingtravelthreadsbasedoninformationneedmodel
AT polingchen gēnjùzīxùnxūqiúmóshìjìnxínglǚyóuwénzhāngdetuījiàn
AT chénbǎilíng gēnjùzīxùnxūqiúmóshìjìnxínglǚyóuwénzhāngdetuījiàn
_version_ 1718060537168789504