Artificial Neural Network with Genetic Algorithm for Nonlinear Model of Machining Processes

碩士 === 國立高雄第一科技大學 === 機械與自動化工程研究所 === 100 === This study an artificial neural network (ANN) model with hybrid Taguchi-genetic algorithm (HTGA) is applied in a nonlinear multiple-input multiple-output (MIMO) model of machining processes. The HTGA in the MIMO ANN model optimizes parameters (i.e., weig...

Full description

Bibliographic Details
Main Authors: Ming-chang Lee, 李明璋
Other Authors: Jyh-Horng Chou
Format: Others
Language:zh-TW
Published: 2012
Online Access:http://ndltd.ncl.edu.tw/handle/88047810592371927245
id ndltd-TW-100NKIT5689003
record_format oai_dc
spelling ndltd-TW-100NKIT56890032015-10-13T20:51:36Z http://ndltd.ncl.edu.tw/handle/88047810592371927245 Artificial Neural Network with Genetic Algorithm for Nonlinear Model of Machining Processes 非線性機械加工製程之基因演算學習類神經網路模型 Ming-chang Lee 李明璋 碩士 國立高雄第一科技大學 機械與自動化工程研究所 100 This study an artificial neural network (ANN) model with hybrid Taguchi-genetic algorithm (HTGA) is applied in a nonlinear multiple-input multiple-output (MIMO) model of machining processes. The HTGA in the MIMO ANN model optimizes parameters (i.e., weights of links and biases governing ) input-output relationships in the ANN by directly minimizing root-mean-squared error (RMSE), which is a key performance criterion. Experimental results show that, for nonlinear modeling of machining processes, the proposed MIMO HTGA-based ANN model has better prediction accuracy compared to conventional MIMO-based ANN models with backpropagation that are included in the Matlab toolbox. Jyh-Horng Chou 周至宏 2012 學位論文 ; thesis 67 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立高雄第一科技大學 === 機械與自動化工程研究所 === 100 === This study an artificial neural network (ANN) model with hybrid Taguchi-genetic algorithm (HTGA) is applied in a nonlinear multiple-input multiple-output (MIMO) model of machining processes. The HTGA in the MIMO ANN model optimizes parameters (i.e., weights of links and biases governing ) input-output relationships in the ANN by directly minimizing root-mean-squared error (RMSE), which is a key performance criterion. Experimental results show that, for nonlinear modeling of machining processes, the proposed MIMO HTGA-based ANN model has better prediction accuracy compared to conventional MIMO-based ANN models with backpropagation that are included in the Matlab toolbox.
author2 Jyh-Horng Chou
author_facet Jyh-Horng Chou
Ming-chang Lee
李明璋
author Ming-chang Lee
李明璋
spellingShingle Ming-chang Lee
李明璋
Artificial Neural Network with Genetic Algorithm for Nonlinear Model of Machining Processes
author_sort Ming-chang Lee
title Artificial Neural Network with Genetic Algorithm for Nonlinear Model of Machining Processes
title_short Artificial Neural Network with Genetic Algorithm for Nonlinear Model of Machining Processes
title_full Artificial Neural Network with Genetic Algorithm for Nonlinear Model of Machining Processes
title_fullStr Artificial Neural Network with Genetic Algorithm for Nonlinear Model of Machining Processes
title_full_unstemmed Artificial Neural Network with Genetic Algorithm for Nonlinear Model of Machining Processes
title_sort artificial neural network with genetic algorithm for nonlinear model of machining processes
publishDate 2012
url http://ndltd.ncl.edu.tw/handle/88047810592371927245
work_keys_str_mv AT mingchanglee artificialneuralnetworkwithgeneticalgorithmfornonlinearmodelofmachiningprocesses
AT lǐmíngzhāng artificialneuralnetworkwithgeneticalgorithmfornonlinearmodelofmachiningprocesses
AT mingchanglee fēixiànxìngjīxièjiāgōngzhìchéngzhījīyīnyǎnsuànxuéxílèishénjīngwǎnglùmóxíng
AT lǐmíngzhāng fēixiànxìngjīxièjiāgōngzhìchéngzhījīyīnyǎnsuànxuéxílèishénjīngwǎnglùmóxíng
_version_ 1718052768404471808