Artificial Neural Network with Genetic Algorithm for Nonlinear Model of Machining Processes
碩士 === 國立高雄第一科技大學 === 機械與自動化工程研究所 === 100 === This study an artificial neural network (ANN) model with hybrid Taguchi-genetic algorithm (HTGA) is applied in a nonlinear multiple-input multiple-output (MIMO) model of machining processes. The HTGA in the MIMO ANN model optimizes parameters (i.e., weig...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
2012
|
Online Access: | http://ndltd.ncl.edu.tw/handle/88047810592371927245 |
id |
ndltd-TW-100NKIT5689003 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-100NKIT56890032015-10-13T20:51:36Z http://ndltd.ncl.edu.tw/handle/88047810592371927245 Artificial Neural Network with Genetic Algorithm for Nonlinear Model of Machining Processes 非線性機械加工製程之基因演算學習類神經網路模型 Ming-chang Lee 李明璋 碩士 國立高雄第一科技大學 機械與自動化工程研究所 100 This study an artificial neural network (ANN) model with hybrid Taguchi-genetic algorithm (HTGA) is applied in a nonlinear multiple-input multiple-output (MIMO) model of machining processes. The HTGA in the MIMO ANN model optimizes parameters (i.e., weights of links and biases governing ) input-output relationships in the ANN by directly minimizing root-mean-squared error (RMSE), which is a key performance criterion. Experimental results show that, for nonlinear modeling of machining processes, the proposed MIMO HTGA-based ANN model has better prediction accuracy compared to conventional MIMO-based ANN models with backpropagation that are included in the Matlab toolbox. Jyh-Horng Chou 周至宏 2012 學位論文 ; thesis 67 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立高雄第一科技大學 === 機械與自動化工程研究所 === 100 === This study an artificial neural network (ANN) model with hybrid Taguchi-genetic algorithm (HTGA) is applied in a nonlinear multiple-input multiple-output (MIMO) model of machining processes. The HTGA in the MIMO ANN model optimizes parameters (i.e., weights of links and biases governing ) input-output relationships in the ANN by directly minimizing root-mean-squared error (RMSE), which is a key performance criterion. Experimental results show that, for nonlinear modeling of machining processes, the proposed MIMO HTGA-based ANN model has better prediction accuracy compared to conventional MIMO-based ANN models with backpropagation that are included in the Matlab toolbox.
|
author2 |
Jyh-Horng Chou |
author_facet |
Jyh-Horng Chou Ming-chang Lee 李明璋 |
author |
Ming-chang Lee 李明璋 |
spellingShingle |
Ming-chang Lee 李明璋 Artificial Neural Network with Genetic Algorithm for Nonlinear Model of Machining Processes |
author_sort |
Ming-chang Lee |
title |
Artificial Neural Network with Genetic Algorithm for Nonlinear Model of Machining Processes |
title_short |
Artificial Neural Network with Genetic Algorithm for Nonlinear Model of Machining Processes |
title_full |
Artificial Neural Network with Genetic Algorithm for Nonlinear Model of Machining Processes |
title_fullStr |
Artificial Neural Network with Genetic Algorithm for Nonlinear Model of Machining Processes |
title_full_unstemmed |
Artificial Neural Network with Genetic Algorithm for Nonlinear Model of Machining Processes |
title_sort |
artificial neural network with genetic algorithm for nonlinear model of machining processes |
publishDate |
2012 |
url |
http://ndltd.ncl.edu.tw/handle/88047810592371927245 |
work_keys_str_mv |
AT mingchanglee artificialneuralnetworkwithgeneticalgorithmfornonlinearmodelofmachiningprocesses AT lǐmíngzhāng artificialneuralnetworkwithgeneticalgorithmfornonlinearmodelofmachiningprocesses AT mingchanglee fēixiànxìngjīxièjiāgōngzhìchéngzhījīyīnyǎnsuànxuéxílèishénjīngwǎnglùmóxíng AT lǐmíngzhāng fēixiànxìngjīxièjiāgōngzhìchéngzhījīyīnyǎnsuànxuéxílèishénjīngwǎnglùmóxíng |
_version_ |
1718052768404471808 |