Size-Modified Poisson-Nernst-Planck Model

碩士 === 國立新竹教育大學 === 應用數學系碩士班 === 100 === The Poisson-Nernst-Planck (PNP) model is a basic continuum model for simulating ionic flows in an open ion channel. The effects of finite particle size on electrostatics, density profile, and diffusion have been a long existing topic in the study of ionic sol...

Full description

Bibliographic Details
Main Authors: Jen-Ho Lo, 羅仁和
Other Authors: Jinn-Liang Liu
Format: Others
Language:zh-TW
Published: 2012
Online Access:http://ndltd.ncl.edu.tw/handle/96805650568180052217
id ndltd-TW-100NHCT5507018
record_format oai_dc
spelling ndltd-TW-100NHCT55070182016-03-23T04:13:44Z http://ndltd.ncl.edu.tw/handle/96805650568180052217 Size-Modified Poisson-Nernst-Planck Model 泊松能斯特普朗克的尺寸修正模型 Jen-Ho Lo 羅仁和 碩士 國立新竹教育大學 應用數學系碩士班 100 The Poisson-Nernst-Planck (PNP) model is a basic continuum model for simulating ionic flows in an open ion channel. The effects of finite particle size on electrostatics, density profile, and diffusion have been a long existing topic in the study of ionic solution [8]. The Poisson equation is derived from Coulomb's law in electrostatics and Gauss's theorem in calculus. The Nernst-Planck equation is equivalent to the convection-diffussion model. An entropy functional that accounts for the finite size effects of ions in electrolytes proposed by Borukhov et al. [1] for the Poisson-Boltzmann (PB) equation has been generalized by Lu and Zhou [8] to the PNP model. We obtain second-order convergent results for the finite size linear PNP model with exact solutions. For nonlinear finite size PNP model with exact solutions, the numerical errors are almost zero. Jinn-Liang Liu 劉晉良 2012 學位論文 ; thesis 27 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立新竹教育大學 === 應用數學系碩士班 === 100 === The Poisson-Nernst-Planck (PNP) model is a basic continuum model for simulating ionic flows in an open ion channel. The effects of finite particle size on electrostatics, density profile, and diffusion have been a long existing topic in the study of ionic solution [8]. The Poisson equation is derived from Coulomb's law in electrostatics and Gauss's theorem in calculus. The Nernst-Planck equation is equivalent to the convection-diffussion model. An entropy functional that accounts for the finite size effects of ions in electrolytes proposed by Borukhov et al. [1] for the Poisson-Boltzmann (PB) equation has been generalized by Lu and Zhou [8] to the PNP model. We obtain second-order convergent results for the finite size linear PNP model with exact solutions. For nonlinear finite size PNP model with exact solutions, the numerical errors are almost zero.
author2 Jinn-Liang Liu
author_facet Jinn-Liang Liu
Jen-Ho Lo
羅仁和
author Jen-Ho Lo
羅仁和
spellingShingle Jen-Ho Lo
羅仁和
Size-Modified Poisson-Nernst-Planck Model
author_sort Jen-Ho Lo
title Size-Modified Poisson-Nernst-Planck Model
title_short Size-Modified Poisson-Nernst-Planck Model
title_full Size-Modified Poisson-Nernst-Planck Model
title_fullStr Size-Modified Poisson-Nernst-Planck Model
title_full_unstemmed Size-Modified Poisson-Nernst-Planck Model
title_sort size-modified poisson-nernst-planck model
publishDate 2012
url http://ndltd.ncl.edu.tw/handle/96805650568180052217
work_keys_str_mv AT jenholo sizemodifiedpoissonnernstplanckmodel
AT luórénhé sizemodifiedpoissonnernstplanckmodel
AT jenholo pōsōngnéngsītèpǔlǎngkèdechǐcùnxiūzhèngmóxíng
AT luórénhé pōsōngnéngsītèpǔlǎngkèdechǐcùnxiūzhèngmóxíng
_version_ 1718210625092452352