Size-Modified Poisson-Nernst-Planck Model
碩士 === 國立新竹教育大學 === 應用數學系碩士班 === 100 === The Poisson-Nernst-Planck (PNP) model is a basic continuum model for simulating ionic flows in an open ion channel. The effects of finite particle size on electrostatics, density profile, and diffusion have been a long existing topic in the study of ionic sol...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
2012
|
Online Access: | http://ndltd.ncl.edu.tw/handle/96805650568180052217 |
id |
ndltd-TW-100NHCT5507018 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-100NHCT55070182016-03-23T04:13:44Z http://ndltd.ncl.edu.tw/handle/96805650568180052217 Size-Modified Poisson-Nernst-Planck Model 泊松能斯特普朗克的尺寸修正模型 Jen-Ho Lo 羅仁和 碩士 國立新竹教育大學 應用數學系碩士班 100 The Poisson-Nernst-Planck (PNP) model is a basic continuum model for simulating ionic flows in an open ion channel. The effects of finite particle size on electrostatics, density profile, and diffusion have been a long existing topic in the study of ionic solution [8]. The Poisson equation is derived from Coulomb's law in electrostatics and Gauss's theorem in calculus. The Nernst-Planck equation is equivalent to the convection-diffussion model. An entropy functional that accounts for the finite size effects of ions in electrolytes proposed by Borukhov et al. [1] for the Poisson-Boltzmann (PB) equation has been generalized by Lu and Zhou [8] to the PNP model. We obtain second-order convergent results for the finite size linear PNP model with exact solutions. For nonlinear finite size PNP model with exact solutions, the numerical errors are almost zero. Jinn-Liang Liu 劉晉良 2012 學位論文 ; thesis 27 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立新竹教育大學 === 應用數學系碩士班 === 100 === The Poisson-Nernst-Planck (PNP) model is a basic continuum model for simulating ionic flows in an open ion channel. The effects of finite particle size on electrostatics, density profile, and diffusion have been a long existing topic in the study of ionic solution [8]. The Poisson equation is derived from Coulomb's law in electrostatics and Gauss's theorem in calculus. The Nernst-Planck equation is equivalent to the convection-diffussion model. An entropy functional that accounts for the finite size effects of ions in electrolytes proposed by Borukhov et al. [1] for the Poisson-Boltzmann (PB) equation has been generalized by Lu and Zhou [8] to the PNP model. We obtain second-order convergent results for the finite size linear PNP model with exact solutions.
For nonlinear finite size PNP model with exact solutions, the numerical errors are almost zero.
|
author2 |
Jinn-Liang Liu |
author_facet |
Jinn-Liang Liu Jen-Ho Lo 羅仁和 |
author |
Jen-Ho Lo 羅仁和 |
spellingShingle |
Jen-Ho Lo 羅仁和 Size-Modified Poisson-Nernst-Planck Model |
author_sort |
Jen-Ho Lo |
title |
Size-Modified Poisson-Nernst-Planck Model |
title_short |
Size-Modified Poisson-Nernst-Planck Model |
title_full |
Size-Modified Poisson-Nernst-Planck Model |
title_fullStr |
Size-Modified Poisson-Nernst-Planck Model |
title_full_unstemmed |
Size-Modified Poisson-Nernst-Planck Model |
title_sort |
size-modified poisson-nernst-planck model |
publishDate |
2012 |
url |
http://ndltd.ncl.edu.tw/handle/96805650568180052217 |
work_keys_str_mv |
AT jenholo sizemodifiedpoissonnernstplanckmodel AT luórénhé sizemodifiedpoissonnernstplanckmodel AT jenholo pōsōngnéngsītèpǔlǎngkèdechǐcùnxiūzhèngmóxíng AT luórénhé pōsōngnéngsītèpǔlǎngkèdechǐcùnxiūzhèngmóxíng |
_version_ |
1718210625092452352 |