Optimal stopping problems for matrix-exponential jump-diffusion processes

博士 === 國立交通大學 === 應用數學系所 === 100 === In this dissertation, we consider the optimal stopping problems for a general class of reward functions under the matrix-exponential jump-diffusion processes. Given the reward function in this class, following the averaging problem approach(see, for example, Alil...

Full description

Bibliographic Details
Main Author: 蔡明耀
Other Authors: 許元春
Format: Others
Language:en_US
Published: 2012
Online Access:http://ndltd.ncl.edu.tw/handle/59160692321465414169
id ndltd-TW-100NCTU5507087
record_format oai_dc
spelling ndltd-TW-100NCTU55070872016-03-28T04:20:38Z http://ndltd.ncl.edu.tw/handle/59160692321465414169 Optimal stopping problems for matrix-exponential jump-diffusion processes 矩陣指數跳躍擴散的最佳停止問題 蔡明耀 博士 國立交通大學 應用數學系所 100 In this dissertation, we consider the optimal stopping problems for a general class of reward functions under the matrix-exponential jump-diffusion processes. Given the reward function in this class, following the averaging problem approach(see, for example, Alili and Kyprianou [1], Kyprianou and Surya [16], Novikov and Shiryaev [22], and Surya [27] ), we give an explicit formula for solutions of the corresponding averaging problem. Based on this explicit formula, we obtain the optimal boundary and the value function for the American optimal stopping problems. Also, we consider the pricing problems of perpetual American compound options under the matrix-exponential jump-diffusion processes. Following Gapeev and Rodosthenous [12], the initial two-step optimal stopping problems are decomposed into sequences of one-step problems for the underlying jump-diffusion process. In the double-exponential jump-diffusion model, we obtain the explicit pricing formula for the perpetual American compound option pricing problems. By our approach, we also recover results obtained in Gapeev and Rodosthenous [12] 許元春 2012 學位論文 ; thesis 64 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 博士 === 國立交通大學 === 應用數學系所 === 100 === In this dissertation, we consider the optimal stopping problems for a general class of reward functions under the matrix-exponential jump-diffusion processes. Given the reward function in this class, following the averaging problem approach(see, for example, Alili and Kyprianou [1], Kyprianou and Surya [16], Novikov and Shiryaev [22], and Surya [27] ), we give an explicit formula for solutions of the corresponding averaging problem. Based on this explicit formula, we obtain the optimal boundary and the value function for the American optimal stopping problems. Also, we consider the pricing problems of perpetual American compound options under the matrix-exponential jump-diffusion processes. Following Gapeev and Rodosthenous [12], the initial two-step optimal stopping problems are decomposed into sequences of one-step problems for the underlying jump-diffusion process. In the double-exponential jump-diffusion model, we obtain the explicit pricing formula for the perpetual American compound option pricing problems. By our approach, we also recover results obtained in Gapeev and Rodosthenous [12]
author2 許元春
author_facet 許元春
蔡明耀
author 蔡明耀
spellingShingle 蔡明耀
Optimal stopping problems for matrix-exponential jump-diffusion processes
author_sort 蔡明耀
title Optimal stopping problems for matrix-exponential jump-diffusion processes
title_short Optimal stopping problems for matrix-exponential jump-diffusion processes
title_full Optimal stopping problems for matrix-exponential jump-diffusion processes
title_fullStr Optimal stopping problems for matrix-exponential jump-diffusion processes
title_full_unstemmed Optimal stopping problems for matrix-exponential jump-diffusion processes
title_sort optimal stopping problems for matrix-exponential jump-diffusion processes
publishDate 2012
url http://ndltd.ncl.edu.tw/handle/59160692321465414169
work_keys_str_mv AT càimíngyào optimalstoppingproblemsformatrixexponentialjumpdiffusionprocesses
AT càimíngyào jǔzhènzhǐshùtiàoyuèkuòsàndezuìjiātíngzhǐwèntí
_version_ 1718213636955045888