Tailored Finite Point Method and Continuation Method for Solving a Nonlinear Schrodinger Eigenvalue Problem

碩士 === 國立中興大學 === 應用數學系所 === 100 === We study a Tailored Finite Point Method (TFPM) and predictor-corrector continuation method for solving eigenvalue problems include simple linear eigenvalue problem, nonlinear eigenvalue problem, linear Schrodinger eigenvalue problem, nonlinear Schrodinger eigenva...

Full description

Bibliographic Details
Main Authors: Bo-Cheng Wei, 魏柏丞
Other Authors: 施因澤
Format: Others
Language:en_US
Published: 2012
Online Access:http://ndltd.ncl.edu.tw/handle/77831501474497560667
id ndltd-TW-100NCHU5507078
record_format oai_dc
spelling ndltd-TW-100NCHU55070782015-10-13T21:51:13Z http://ndltd.ncl.edu.tw/handle/77831501474497560667 Tailored Finite Point Method and Continuation Method for Solving a Nonlinear Schrodinger Eigenvalue Problem 利用裁縫有限點法與延續法則解非線性薛丁格特徵值問題 Bo-Cheng Wei 魏柏丞 碩士 國立中興大學 應用數學系所 100 We study a Tailored Finite Point Method (TFPM) and predictor-corrector continuation method for solving eigenvalue problems include simple linear eigenvalue problem, nonlinear eigenvalue problem, linear Schrodinger eigenvalue problem, nonlinear Schrodinger eigenvalue problem, and coupled nonlinear Schrodinger eigenvalue problem. First, we present a tailored finite point method to discretize above equa- tions, and trace the solution curve by predictor-corrector continuation method. The numerical results of the problem with exact solution show that error for TFPM is in order of O(h︿2). 施因澤 2012 學位論文 ; thesis 35 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立中興大學 === 應用數學系所 === 100 === We study a Tailored Finite Point Method (TFPM) and predictor-corrector continuation method for solving eigenvalue problems include simple linear eigenvalue problem, nonlinear eigenvalue problem, linear Schrodinger eigenvalue problem, nonlinear Schrodinger eigenvalue problem, and coupled nonlinear Schrodinger eigenvalue problem. First, we present a tailored finite point method to discretize above equa- tions, and trace the solution curve by predictor-corrector continuation method. The numerical results of the problem with exact solution show that error for TFPM is in order of O(h︿2).
author2 施因澤
author_facet 施因澤
Bo-Cheng Wei
魏柏丞
author Bo-Cheng Wei
魏柏丞
spellingShingle Bo-Cheng Wei
魏柏丞
Tailored Finite Point Method and Continuation Method for Solving a Nonlinear Schrodinger Eigenvalue Problem
author_sort Bo-Cheng Wei
title Tailored Finite Point Method and Continuation Method for Solving a Nonlinear Schrodinger Eigenvalue Problem
title_short Tailored Finite Point Method and Continuation Method for Solving a Nonlinear Schrodinger Eigenvalue Problem
title_full Tailored Finite Point Method and Continuation Method for Solving a Nonlinear Schrodinger Eigenvalue Problem
title_fullStr Tailored Finite Point Method and Continuation Method for Solving a Nonlinear Schrodinger Eigenvalue Problem
title_full_unstemmed Tailored Finite Point Method and Continuation Method for Solving a Nonlinear Schrodinger Eigenvalue Problem
title_sort tailored finite point method and continuation method for solving a nonlinear schrodinger eigenvalue problem
publishDate 2012
url http://ndltd.ncl.edu.tw/handle/77831501474497560667
work_keys_str_mv AT bochengwei tailoredfinitepointmethodandcontinuationmethodforsolvinganonlinearschrodingereigenvalueproblem
AT wèibǎichéng tailoredfinitepointmethodandcontinuationmethodforsolvinganonlinearschrodingereigenvalueproblem
AT bochengwei lìyòngcáifèngyǒuxiàndiǎnfǎyǔyánxùfǎzéjiěfēixiànxìngxuēdīnggétèzhēngzhíwèntí
AT wèibǎichéng lìyòngcáifèngyǒuxiàndiǎnfǎyǔyánxùfǎzéjiěfēixiànxìngxuēdīnggétèzhēngzhíwèntí
_version_ 1718069793034076160