Tailored Finite Point Method and Continuation Method for Solving a Nonlinear Schrodinger Eigenvalue Problem
碩士 === 國立中興大學 === 應用數學系所 === 100 === We study a Tailored Finite Point Method (TFPM) and predictor-corrector continuation method for solving eigenvalue problems include simple linear eigenvalue problem, nonlinear eigenvalue problem, linear Schrodinger eigenvalue problem, nonlinear Schrodinger eigenva...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2012
|
Online Access: | http://ndltd.ncl.edu.tw/handle/77831501474497560667 |
id |
ndltd-TW-100NCHU5507078 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-100NCHU55070782015-10-13T21:51:13Z http://ndltd.ncl.edu.tw/handle/77831501474497560667 Tailored Finite Point Method and Continuation Method for Solving a Nonlinear Schrodinger Eigenvalue Problem 利用裁縫有限點法與延續法則解非線性薛丁格特徵值問題 Bo-Cheng Wei 魏柏丞 碩士 國立中興大學 應用數學系所 100 We study a Tailored Finite Point Method (TFPM) and predictor-corrector continuation method for solving eigenvalue problems include simple linear eigenvalue problem, nonlinear eigenvalue problem, linear Schrodinger eigenvalue problem, nonlinear Schrodinger eigenvalue problem, and coupled nonlinear Schrodinger eigenvalue problem. First, we present a tailored finite point method to discretize above equa- tions, and trace the solution curve by predictor-corrector continuation method. The numerical results of the problem with exact solution show that error for TFPM is in order of O(h︿2). 施因澤 2012 學位論文 ; thesis 35 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立中興大學 === 應用數學系所 === 100 === We study a Tailored Finite Point Method (TFPM) and predictor-corrector continuation method for solving eigenvalue problems include simple linear eigenvalue problem, nonlinear eigenvalue problem, linear Schrodinger eigenvalue problem, nonlinear Schrodinger eigenvalue problem, and coupled nonlinear Schrodinger eigenvalue problem. First, we present a tailored finite point method to discretize above equa- tions, and trace the solution curve by predictor-corrector continuation method. The numerical results of the problem with exact solution show that error for TFPM is in order of O(h︿2).
|
author2 |
施因澤 |
author_facet |
施因澤 Bo-Cheng Wei 魏柏丞 |
author |
Bo-Cheng Wei 魏柏丞 |
spellingShingle |
Bo-Cheng Wei 魏柏丞 Tailored Finite Point Method and Continuation Method for Solving a Nonlinear Schrodinger Eigenvalue Problem |
author_sort |
Bo-Cheng Wei |
title |
Tailored Finite Point Method and Continuation Method for Solving a Nonlinear Schrodinger Eigenvalue Problem |
title_short |
Tailored Finite Point Method and Continuation Method for Solving a Nonlinear Schrodinger Eigenvalue Problem |
title_full |
Tailored Finite Point Method and Continuation Method for Solving a Nonlinear Schrodinger Eigenvalue Problem |
title_fullStr |
Tailored Finite Point Method and Continuation Method for Solving a Nonlinear Schrodinger Eigenvalue Problem |
title_full_unstemmed |
Tailored Finite Point Method and Continuation Method for Solving a Nonlinear Schrodinger Eigenvalue Problem |
title_sort |
tailored finite point method and continuation method for solving a nonlinear schrodinger eigenvalue problem |
publishDate |
2012 |
url |
http://ndltd.ncl.edu.tw/handle/77831501474497560667 |
work_keys_str_mv |
AT bochengwei tailoredfinitepointmethodandcontinuationmethodforsolvinganonlinearschrodingereigenvalueproblem AT wèibǎichéng tailoredfinitepointmethodandcontinuationmethodforsolvinganonlinearschrodingereigenvalueproblem AT bochengwei lìyòngcáifèngyǒuxiàndiǎnfǎyǔyánxùfǎzéjiěfēixiànxìngxuēdīnggétèzhēngzhíwèntí AT wèibǎichéng lìyòngcáifèngyǒuxiàndiǎnfǎyǔyánxùfǎzéjiěfēixiànxìngxuēdīnggétèzhēngzhíwèntí |
_version_ |
1718069793034076160 |