Examination on the relationship between apparent source width and auditory evoked potential from the cerebral hemispheres

碩士 === 朝陽科技大學 === 建築及都市設計研究所 === 100 === Morimoto (1989) proposed in a spatial impression study that listening envelopment (LEV) and apparent source width (ASW) were two essential components that determine the spatial sense of a concert hall. While the acoustic impression of ASW was usually composed...

Full description

Bibliographic Details
Main Authors: Chi-Wen Lin, 林棋文
Other Authors: Chiung-Yao Chen
Format: Others
Language:zh-TW
Published: 2012
Online Access:http://ndltd.ncl.edu.tw/handle/06872761144752043108
Description
Summary:碩士 === 朝陽科技大學 === 建築及都市設計研究所 === 100 === Morimoto (1989) proposed in a spatial impression study that listening envelopment (LEV) and apparent source width (ASW) were two essential components that determine the spatial sense of a concert hall. While the acoustic impression of ASW was usually composed of direct sound and first reflection (Morimoto, 1989), the LEV was formed by response element. The auditory path through which an acoustic signal from the stage was transmitted to the listener’s brain proposed by Ando (1985) demonstrated in detail how the central nervous system processes the nerve impulse formed in the auditory nerve ending. The characteristic response in the process during which the nerve processes the acoustic signals can be observed and summarized using the cerebral cortex brainwaves. By modifying the magnitude of interaural cross-correlation function (IACC) of the space, the study investigated the changes in different indoor ASW responses and slow vertex response (SVR) caused by apparent acoustic stimulation and compared the difference among these changes. The study also tried to construct a study method with an objective physiological acoustic design. According to the study result: 1. By modifying the IACC in the psychological experiment, quantitative psychological measurements of ASW were as follows: ASW(IACC=0.56) = 0.45 > ASW(IACC=0.68) = 0.03 > ASW(IACC=0.35) = -0.16 > ASW(IACC=0.81) = -0.32, demonstrating a non-linear relationship. 2. The comparison result between changes in brainwaves suggested that within the range from ASW(-0.32) to ASW(0.45), the difference in brainwave amplitude at A (P2-N2) decreased with the increased ASW; while the duration of N2 latency of the left hemisphere shortened with the increased ASW.