Multiple Zeta Values And Their Applications In Combinatorics

碩士 === 國立中正大學 === 數學研究所 === 100 === The study of multiple zeta values defined by \begin{align*} \zeta(\alpha)=\sum_{1\leq n_1<n_2<\cdots<n_r}n_1^{-\alpha_1}n_2^{-\alpha_2}\cdots n_r^{-\alpha_r} \end{align*} with $\alpha_1$, $\alpha_2$, $\ldots$, $\alpha_r$ positive integers and $\alpha_r\ge...

Full description

Bibliographic Details
Main Authors: Chen, Miao, 陳淼
Other Authors: Eie, Minking
Format: Others
Language:en_US
Published: 2012
Online Access:http://ndltd.ncl.edu.tw/handle/69179270410273332462
id ndltd-TW-100CCU00479006
record_format oai_dc
spelling ndltd-TW-100CCU004790062015-10-13T21:02:23Z http://ndltd.ncl.edu.tw/handle/69179270410273332462 Multiple Zeta Values And Their Applications In Combinatorics Chen, Miao 陳淼 碩士 國立中正大學 數學研究所 100 The study of multiple zeta values defined by \begin{align*} \zeta(\alpha)=\sum_{1\leq n_1<n_2<\cdots<n_r}n_1^{-\alpha_1}n_2^{-\alpha_2}\cdots n_r^{-\alpha_r} \end{align*} with $\alpha_1$, $\alpha_2$, $\ldots$, $\alpha_r$ positive integers and $\alpha_r\geq2$, had caused a great attention from experts both in physics and mathematics. In this thesis, we produce some combinatorial identities through the shuffle product of multiple zeta values based on the simple fact that the shuffle product of two multiple zeta values of weight $m$ and $n$ will produce $\binom{m+n}{n}$ multiple zeta values of weight $m+n$. In particular, we express the generating functions of some particular products of binomial coefficients in terms of some polynomials. Separating the coefficient then yields combinatorial identities among binomial coefficients. For example, we obtain the following identity \begin{align*} &(j+1)(k-j+1)\binom{k+r+4}{j+\ell+2}\\ &=\sum_{k_1+k_2=k}(k_1+1)(k_2+1)\binom{k_1}{j} \binom{k_2+r+2}{\ell}\\ &\quad\quad+\sum_{k_1+k_2=k}(k_1+1)(k_2+1) \binom{k_1}{k-j} \binom{k_2+r+2}{r-\ell}\\ &\quad\quad+\sum_{k_1+k_2=k}(k_1+1)(k_1+2) \binom{k_1}{j} \binom{k_2+r+1}{\ell}\\ &\quad\quad+\sum_{k_1+k_2=k}(k_1+1)(k_1+2) \binom{k_1}{k-j} \binom{k_2+r+1}{r-\ell}, \end{align*} where $k$, $r$, $j$, $\ell$ are integers with $0\leqslant j \leqslant k$ and $0\leqslant \ell \leqslant r$. Eie, Minking 余文卿 2012 學位論文 ; thesis 34 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 國立中正大學 === 數學研究所 === 100 === The study of multiple zeta values defined by \begin{align*} \zeta(\alpha)=\sum_{1\leq n_1<n_2<\cdots<n_r}n_1^{-\alpha_1}n_2^{-\alpha_2}\cdots n_r^{-\alpha_r} \end{align*} with $\alpha_1$, $\alpha_2$, $\ldots$, $\alpha_r$ positive integers and $\alpha_r\geq2$, had caused a great attention from experts both in physics and mathematics. In this thesis, we produce some combinatorial identities through the shuffle product of multiple zeta values based on the simple fact that the shuffle product of two multiple zeta values of weight $m$ and $n$ will produce $\binom{m+n}{n}$ multiple zeta values of weight $m+n$. In particular, we express the generating functions of some particular products of binomial coefficients in terms of some polynomials. Separating the coefficient then yields combinatorial identities among binomial coefficients. For example, we obtain the following identity \begin{align*} &(j+1)(k-j+1)\binom{k+r+4}{j+\ell+2}\\ &=\sum_{k_1+k_2=k}(k_1+1)(k_2+1)\binom{k_1}{j} \binom{k_2+r+2}{\ell}\\ &\quad\quad+\sum_{k_1+k_2=k}(k_1+1)(k_2+1) \binom{k_1}{k-j} \binom{k_2+r+2}{r-\ell}\\ &\quad\quad+\sum_{k_1+k_2=k}(k_1+1)(k_1+2) \binom{k_1}{j} \binom{k_2+r+1}{\ell}\\ &\quad\quad+\sum_{k_1+k_2=k}(k_1+1)(k_1+2) \binom{k_1}{k-j} \binom{k_2+r+1}{r-\ell}, \end{align*} where $k$, $r$, $j$, $\ell$ are integers with $0\leqslant j \leqslant k$ and $0\leqslant \ell \leqslant r$.
author2 Eie, Minking
author_facet Eie, Minking
Chen, Miao
陳淼
author Chen, Miao
陳淼
spellingShingle Chen, Miao
陳淼
Multiple Zeta Values And Their Applications In Combinatorics
author_sort Chen, Miao
title Multiple Zeta Values And Their Applications In Combinatorics
title_short Multiple Zeta Values And Their Applications In Combinatorics
title_full Multiple Zeta Values And Their Applications In Combinatorics
title_fullStr Multiple Zeta Values And Their Applications In Combinatorics
title_full_unstemmed Multiple Zeta Values And Their Applications In Combinatorics
title_sort multiple zeta values and their applications in combinatorics
publishDate 2012
url http://ndltd.ncl.edu.tw/handle/69179270410273332462
work_keys_str_mv AT chenmiao multiplezetavaluesandtheirapplicationsincombinatorics
AT chénmiǎo multiplezetavaluesandtheirapplicationsincombinatorics
_version_ 1718053785921650688