Computation of low dimensional Puiseux expansion of algebraic curves
碩士 === 淡江大學 === 數學學系碩士班 === 99 === If we have an equation that is f(x,y) = a0(x)+a1(x)*y+a2(x)*y2+...+an(x)*yn = 0, ai(x)∈C(x)∗, we want to find solutions which are of the form x^{r1}(c1 + x^{r2}(c2 + x^{r3}(c3 + ...))), r2,r3,r4,...> 0, and we will discuss the bifurcation of y(x) and when the lo...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
2011
|
Online Access: | http://ndltd.ncl.edu.tw/handle/53456178791939629752 |
id |
ndltd-TW-099TKU05479018 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-099TKU054790182015-10-26T04:04:24Z http://ndltd.ncl.edu.tw/handle/53456178791939629752 Computation of low dimensional Puiseux expansion of algebraic curves 低維度代數曲線之 Puiseux 展開式之計算 Shi-Shung Lin 林士翔 碩士 淡江大學 數學學系碩士班 99 If we have an equation that is f(x,y) = a0(x)+a1(x)*y+a2(x)*y2+...+an(x)*yn = 0, ai(x)∈C(x)∗, we want to find solutions which are of the form x^{r1}(c1 + x^{r2}(c2 + x^{r3}(c3 + ...))), r2,r3,r4,...> 0, and we will discuss the bifurcation of y(x) and when the lowest common denominator of {r1,r2,r3,...} appears. Finally, we compute the range of convergence of y(x) expansion. Meng-Nien Wu 吳孟年 2011 學位論文 ; thesis 17 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 淡江大學 === 數學學系碩士班 === 99 === If we have an equation that is f(x,y) = a0(x)+a1(x)*y+a2(x)*y2+...+an(x)*yn = 0, ai(x)∈C(x)∗, we want to find solutions which are of the form x^{r1}(c1 + x^{r2}(c2 + x^{r3}(c3 + ...))), r2,r3,r4,...> 0, and we will discuss the bifurcation of y(x) and when the lowest common denominator of {r1,r2,r3,...} appears. Finally, we compute the range of convergence of y(x) expansion.
|
author2 |
Meng-Nien Wu |
author_facet |
Meng-Nien Wu Shi-Shung Lin 林士翔 |
author |
Shi-Shung Lin 林士翔 |
spellingShingle |
Shi-Shung Lin 林士翔 Computation of low dimensional Puiseux expansion of algebraic curves |
author_sort |
Shi-Shung Lin |
title |
Computation of low dimensional Puiseux expansion of algebraic curves |
title_short |
Computation of low dimensional Puiseux expansion of algebraic curves |
title_full |
Computation of low dimensional Puiseux expansion of algebraic curves |
title_fullStr |
Computation of low dimensional Puiseux expansion of algebraic curves |
title_full_unstemmed |
Computation of low dimensional Puiseux expansion of algebraic curves |
title_sort |
computation of low dimensional puiseux expansion of algebraic curves |
publishDate |
2011 |
url |
http://ndltd.ncl.edu.tw/handle/53456178791939629752 |
work_keys_str_mv |
AT shishunglin computationoflowdimensionalpuiseuxexpansionofalgebraiccurves AT línshìxiáng computationoflowdimensionalpuiseuxexpansionofalgebraiccurves AT shishunglin dīwéidùdàishùqūxiànzhīpuiseuxzhǎnkāishìzhījìsuàn AT línshìxiáng dīwéidùdàishùqūxiànzhīpuiseuxzhǎnkāishìzhījìsuàn |
_version_ |
1718111296135626752 |