Summary: | 碩士 === 國立臺灣大學 === 地質科學研究所 === 99 === Global warming has become a universal topic in these days. The clean and recyclable energy is an important topic for us. Hydrogen generation from photocatalytic water splitting is a green process that ensures generating energy without pollution. Therefore it’s vital to investigate the photoelectrode materials for improving its energy conversion efficiency.
In this study, we fabricate highly ordered one-dimensional titanium oxide nanorod array on fluorine-doped tin oxide substrate by hydrothermal method as photoelectrode materials. Owing to its large band gap, titanium dioxide (TiO2) has been limited by its poor utilization of solar energy. Synthesis of cadmium sulfide (CdS) or cadmium selenide (CdSe) quantum dots as photosensitizer can successfully extended its photoresponse to visible light. The results showed that the photoconversion efficiency (η) of cadmium sulfide quantum dots coating on TiO2 nanorod increased from 0.019 to 2.455%, and the photoconversion efficiency of cadmium selenide quantum dots coating on TiO2 nanorod increased from 0.019 to 0.916%.
In addition, due to the transparent substrate, we design a double-sided CdS and CdSe quantum dot cosensitized TiO2 nanorod photoanode for photoelectrochemical (PEC) hydrogen generation. The result also showed improvement for photoconversion efficiency, and incident-photon-to-current-conversion efficiency (IPCE). The double-sided model improves IPCE values to 38.098 % under visible spectrum 660 nm. It also exhibits well photocatalytic activity in the photodegradation of methylene blue under solar simulator illumination.
|