Studies of Nonlinear Optical Properties of the Blue Phase Liquid Crystals

碩士 === 國立中山大學 === 光電工程學系研究所 === 99 === This study researches the nonlinear optical properties of the blue phase liquid crystals using the Z-scan technique. The purpose is to investigate the non-linear effect of the blue phase liquid crystals induced by the thermal and the liquid crystal reorientatio...

Full description

Bibliographic Details
Main Authors: Chiao-Yun Hsu, 許巧芸
Other Authors: Tsung-Hsian Lin
Format: Others
Language:zh-TW
Published: 2011
Online Access:http://ndltd.ncl.edu.tw/handle/64506381093764918917
id ndltd-TW-099NSYS5124055
record_format oai_dc
spelling ndltd-TW-099NSYS51240552015-10-19T04:03:18Z http://ndltd.ncl.edu.tw/handle/64506381093764918917 Studies of Nonlinear Optical Properties of the Blue Phase Liquid Crystals 藍相液晶非線性光學之研究 Chiao-Yun Hsu 許巧芸 碩士 國立中山大學 光電工程學系研究所 99 This study researches the nonlinear optical properties of the blue phase liquid crystals using the Z-scan technique. The purpose is to investigate the non-linear effect of the blue phase liquid crystals induced by the thermal and the liquid crystal reorientation effect. The Z-scan technique is common method to measure the non-linear index n2 and the non-linear absorption coefficient of materials. The measurement of the optical Kerr constant using Z-scan is based on the principle of spatial beam distortion due to the self-focusing or self-defocusing. For typical nematic liquid crystals, the nonlinear effect in the nematic phase is large than that in the isotropic phase. However, due to the anisotropic properties of the liquid crystal, the light-induced nonlinear effect in the nematic phase is polarization dependency. Unlike nematic phase, the blue phase is optical isotropic duo to its symmetric structure, and therefore blue phase are polarization independent and provide a larger non-linear effect. The experiments to measure the nonlinear refractive index n2 are as follows: firstly, a linearly polarized Ar+ laser light (λ=532nm) is focused in the z direction onto the sample via lens, and the detector was set behind the sample. Sequentially, the light intensity is recorded while the sample is scanned near the beam waist of the green laser. Finally, the non-linear index n2 of the material is derived from mathematical calculation. The study investigated two kinds of material, pure blue phase liquid crystal and dye-doped blue phase liquid crystal, and measured their non-linear index n2 in the blue phase and isotropic phase, respectively. The experimental results show that the non-linear index n2 of dye-doped blue phase liquid crystal is 100~1000 times as large as this of the pure blue phase liquid crystal at the blue phase. Besides, compared with isotropic phase in the blue phase liquid crystal, the blue phase actually possesses larger non-linear index n2. This experiment confirms that the nonlinear effect can be induced using linearly polarized Ar+ laser, and the nonlinear refractive index n2 can be measured using Z-scan technique. Tsung-Hsian Lin 林宗賢 2011 學位論文 ; thesis 85 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立中山大學 === 光電工程學系研究所 === 99 === This study researches the nonlinear optical properties of the blue phase liquid crystals using the Z-scan technique. The purpose is to investigate the non-linear effect of the blue phase liquid crystals induced by the thermal and the liquid crystal reorientation effect. The Z-scan technique is common method to measure the non-linear index n2 and the non-linear absorption coefficient of materials. The measurement of the optical Kerr constant using Z-scan is based on the principle of spatial beam distortion due to the self-focusing or self-defocusing. For typical nematic liquid crystals, the nonlinear effect in the nematic phase is large than that in the isotropic phase. However, due to the anisotropic properties of the liquid crystal, the light-induced nonlinear effect in the nematic phase is polarization dependency. Unlike nematic phase, the blue phase is optical isotropic duo to its symmetric structure, and therefore blue phase are polarization independent and provide a larger non-linear effect. The experiments to measure the nonlinear refractive index n2 are as follows: firstly, a linearly polarized Ar+ laser light (λ=532nm) is focused in the z direction onto the sample via lens, and the detector was set behind the sample. Sequentially, the light intensity is recorded while the sample is scanned near the beam waist of the green laser. Finally, the non-linear index n2 of the material is derived from mathematical calculation. The study investigated two kinds of material, pure blue phase liquid crystal and dye-doped blue phase liquid crystal, and measured their non-linear index n2 in the blue phase and isotropic phase, respectively. The experimental results show that the non-linear index n2 of dye-doped blue phase liquid crystal is 100~1000 times as large as this of the pure blue phase liquid crystal at the blue phase. Besides, compared with isotropic phase in the blue phase liquid crystal, the blue phase actually possesses larger non-linear index n2. This experiment confirms that the nonlinear effect can be induced using linearly polarized Ar+ laser, and the nonlinear refractive index n2 can be measured using Z-scan technique.
author2 Tsung-Hsian Lin
author_facet Tsung-Hsian Lin
Chiao-Yun Hsu
許巧芸
author Chiao-Yun Hsu
許巧芸
spellingShingle Chiao-Yun Hsu
許巧芸
Studies of Nonlinear Optical Properties of the Blue Phase Liquid Crystals
author_sort Chiao-Yun Hsu
title Studies of Nonlinear Optical Properties of the Blue Phase Liquid Crystals
title_short Studies of Nonlinear Optical Properties of the Blue Phase Liquid Crystals
title_full Studies of Nonlinear Optical Properties of the Blue Phase Liquid Crystals
title_fullStr Studies of Nonlinear Optical Properties of the Blue Phase Liquid Crystals
title_full_unstemmed Studies of Nonlinear Optical Properties of the Blue Phase Liquid Crystals
title_sort studies of nonlinear optical properties of the blue phase liquid crystals
publishDate 2011
url http://ndltd.ncl.edu.tw/handle/64506381093764918917
work_keys_str_mv AT chiaoyunhsu studiesofnonlinearopticalpropertiesofthebluephaseliquidcrystals
AT xǔqiǎoyún studiesofnonlinearopticalpropertiesofthebluephaseliquidcrystals
AT chiaoyunhsu lánxiāngyèjīngfēixiànxìngguāngxuézhīyánjiū
AT xǔqiǎoyún lánxiāngyèjīngfēixiànxìngguāngxuézhīyánjiū
_version_ 1718093911923097600