Discussing the Happy Ending problem from the Paul Erdős-Szekeres Theory
碩士 === 國立屏東教育大學 === 應用數學系 === 99 === In 1935, Esther Klein [1] asked, “Is it true that for every n, there is a least value g(n) such that any set of g(n) points in the plane in general position always contains the vertices of a convex n-gon?” This is the “Happy Ending problem” because it led to the...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
2009
|
Online Access: | http://ndltd.ncl.edu.tw/handle/55678263536694566103 |
id |
ndltd-TW-099NPTT5507009 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-099NPTT55070092015-10-13T19:07:22Z http://ndltd.ncl.edu.tw/handle/55678263536694566103 Discussing the Happy Ending problem from the Paul Erdős-Szekeres Theory 從Paul Erdős 和Szekeres 理論探討幸福結局問題 Fu-Cyuan Wun 溫福銓 碩士 國立屏東教育大學 應用數學系 99 In 1935, Esther Klein [1] asked, “Is it true that for every n, there is a least value g(n) such that any set of g(n) points in the plane in general position always contains the vertices of a convex n-gon?” This is the “Happy Ending problem” because it led to the marriage of George Szekeres and Esther Klein. In this paper, we show the existence of g(n) and estimate its upper bound and lower bound by using the Erdős-Szekeres Theorem. We also constructing explicit examples for the minimal possible g(n) for a set of g(n) points in the plane in general position must contain a convex n-gon. Chin-Tung Wu 吳進通 2009 學位論文 ; thesis 23 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立屏東教育大學 === 應用數學系 === 99 === In 1935, Esther Klein [1] asked, “Is it true that for every n, there is a least value g(n) such that any set of g(n) points in the plane in general position always contains the vertices of a convex n-gon?”
This is the “Happy Ending problem” because it led to the marriage of George Szekeres and Esther Klein.
In this paper, we show the existence of g(n) and estimate its upper bound and lower bound by using the Erdős-Szekeres Theorem. We also constructing explicit examples for the minimal possible g(n) for a set of g(n) points in the plane in general position must contain a convex n-gon.
|
author2 |
Chin-Tung Wu |
author_facet |
Chin-Tung Wu Fu-Cyuan Wun 溫福銓 |
author |
Fu-Cyuan Wun 溫福銓 |
spellingShingle |
Fu-Cyuan Wun 溫福銓 Discussing the Happy Ending problem from the Paul Erdős-Szekeres Theory |
author_sort |
Fu-Cyuan Wun |
title |
Discussing the Happy Ending problem from the Paul Erdős-Szekeres Theory |
title_short |
Discussing the Happy Ending problem from the Paul Erdős-Szekeres Theory |
title_full |
Discussing the Happy Ending problem from the Paul Erdős-Szekeres Theory |
title_fullStr |
Discussing the Happy Ending problem from the Paul Erdős-Szekeres Theory |
title_full_unstemmed |
Discussing the Happy Ending problem from the Paul Erdős-Szekeres Theory |
title_sort |
discussing the happy ending problem from the paul erdős-szekeres theory |
publishDate |
2009 |
url |
http://ndltd.ncl.edu.tw/handle/55678263536694566103 |
work_keys_str_mv |
AT fucyuanwun discussingthehappyendingproblemfromthepaulerdosszekerestheory AT wēnfúquán discussingthehappyendingproblemfromthepaulerdosszekerestheory AT fucyuanwun cóngpaulerdoshészekereslǐlùntàntǎoxìngfújiéjúwèntí AT wēnfúquán cóngpaulerdoshészekereslǐlùntàntǎoxìngfújiéjúwèntí |
_version_ |
1718041805984890880 |