Discussing the Happy Ending problem from the Paul Erdős-Szekeres Theory

碩士 === 國立屏東教育大學 === 應用數學系 === 99 === In 1935, Esther Klein [1] asked, “Is it true that for every n, there is a least value g(n) such that any set of g(n) points in the plane in general position always contains the vertices of a convex n-gon?” This is the “Happy Ending problem” because it led to the...

Full description

Bibliographic Details
Main Authors: Fu-Cyuan Wun, 溫福銓
Other Authors: Chin-Tung Wu
Format: Others
Language:zh-TW
Published: 2009
Online Access:http://ndltd.ncl.edu.tw/handle/55678263536694566103
id ndltd-TW-099NPTT5507009
record_format oai_dc
spelling ndltd-TW-099NPTT55070092015-10-13T19:07:22Z http://ndltd.ncl.edu.tw/handle/55678263536694566103 Discussing the Happy Ending problem from the Paul Erdős-Szekeres Theory 從Paul Erdős 和Szekeres 理論探討幸福結局問題 Fu-Cyuan Wun 溫福銓 碩士 國立屏東教育大學 應用數學系 99 In 1935, Esther Klein [1] asked, “Is it true that for every n, there is a least value g(n) such that any set of g(n) points in the plane in general position always contains the vertices of a convex n-gon?” This is the “Happy Ending problem” because it led to the marriage of George Szekeres and Esther Klein. In this paper, we show the existence of g(n) and estimate its upper bound and lower bound by using the Erdős-Szekeres Theorem. We also constructing explicit examples for the minimal possible g(n) for a set of g(n) points in the plane in general position must contain a convex n-gon. Chin-Tung Wu 吳進通 2009 學位論文 ; thesis 23 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 國立屏東教育大學 === 應用數學系 === 99 === In 1935, Esther Klein [1] asked, “Is it true that for every n, there is a least value g(n) such that any set of g(n) points in the plane in general position always contains the vertices of a convex n-gon?” This is the “Happy Ending problem” because it led to the marriage of George Szekeres and Esther Klein. In this paper, we show the existence of g(n) and estimate its upper bound and lower bound by using the Erdős-Szekeres Theorem. We also constructing explicit examples for the minimal possible g(n) for a set of g(n) points in the plane in general position must contain a convex n-gon.
author2 Chin-Tung Wu
author_facet Chin-Tung Wu
Fu-Cyuan Wun
溫福銓
author Fu-Cyuan Wun
溫福銓
spellingShingle Fu-Cyuan Wun
溫福銓
Discussing the Happy Ending problem from the Paul Erdős-Szekeres Theory
author_sort Fu-Cyuan Wun
title Discussing the Happy Ending problem from the Paul Erdős-Szekeres Theory
title_short Discussing the Happy Ending problem from the Paul Erdős-Szekeres Theory
title_full Discussing the Happy Ending problem from the Paul Erdős-Szekeres Theory
title_fullStr Discussing the Happy Ending problem from the Paul Erdős-Szekeres Theory
title_full_unstemmed Discussing the Happy Ending problem from the Paul Erdős-Szekeres Theory
title_sort discussing the happy ending problem from the paul erdős-szekeres theory
publishDate 2009
url http://ndltd.ncl.edu.tw/handle/55678263536694566103
work_keys_str_mv AT fucyuanwun discussingthehappyendingproblemfromthepaulerdosszekerestheory
AT wēnfúquán discussingthehappyendingproblemfromthepaulerdosszekerestheory
AT fucyuanwun cóngpaulerdoshészekereslǐlùntàntǎoxìngfújiéjúwèntí
AT wēnfúquán cóngpaulerdoshészekereslǐlùntàntǎoxìngfújiéjúwèntí
_version_ 1718041805984890880