A Study of the Mutually Independent Hamiltonicity and the Spanning Connectivity of Some Interconnection Networks
博士 === 國立交通大學 === 資訊科學與工程研究所 === 99 === The Menger Theorem (Menger, 1972) show that there are k-disjoint paths between any two distinct vertices of G if and only if G is k-connected. A graph G is k*-connected if there exists a k-disjoint paths between any two distinct vertices which contains all the...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2011
|
Online Access: | http://ndltd.ncl.edu.tw/handle/81137779622233546680 |
id |
ndltd-TW-099NCTU5394062 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-099NCTU53940622015-10-13T20:37:09Z http://ndltd.ncl.edu.tw/handle/81137779622233546680 A Study of the Mutually Independent Hamiltonicity and the Spanning Connectivity of Some Interconnection Networks 交換網路的互斥漢米爾頓性質與生成連通性的研究 Lin, Cheng-Kuan 林政寬 博士 國立交通大學 資訊科學與工程研究所 99 The Menger Theorem (Menger, 1972) show that there are k-disjoint paths between any two distinct vertices of G if and only if G is k-connected. A graph G is k*-connected if there exists a k-disjoint paths between any two distinct vertices which contains all the vertices of G. The spanning connectivity of G, k*(G), is defined as the largest integer k such that G is w*-connected for 0 < e w < k+1 if G is a 1*-connected graph. We study the problem of spanning connectivity properties on some interconnection networks and graphs. Cycle embedding and path embedding are perhaps the most important outstanding materials in graph theory and have been defying solutions for more than a century. A hamiltonian cycle C of graph G is described as < u1, u2, ..., un(G), u1 > to emphasize the order of vertices in C. Thus, u1 is the starting vertex and ui is the i-th vertex in C. Two hamiltonian cycles C1 = < u1, u2, ..., un(G), u1 > and C2 = < v1, v2, ..., vn(G), v1 > of G are independent if u1 = v1 and ui is not equal to vi for every i in { 2, ..., n(G) }. A set of hamiltonian cycles { C1, C2, ..., Ck } of G are mutually independent if its elements are pairwise independent. The mutually independent hamiltonianicity IHC(G) of graph G the maximum integer k such that for any vertex u of G there exist k mutually independent hamiltonian cycles of G starting at u. We study this problem on some interconnection networks and graphs. Tan, Jimmy J. M. 譚建民 2011 學位論文 ; thesis 167 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
博士 === 國立交通大學 === 資訊科學與工程研究所 === 99 === The Menger Theorem (Menger, 1972) show that there are k-disjoint paths between any two distinct vertices of G if and only if G is k-connected. A graph G is k*-connected if there exists a k-disjoint paths between any two distinct vertices which contains all the vertices of G. The
spanning connectivity of G, k*(G), is defined as
the largest integer k such that G is w*-connected for 0 < e w < k+1 if G is a 1*-connected graph.
We study the problem of spanning
connectivity properties on some interconnection networks and graphs.
Cycle embedding and path embedding are perhaps the most important outstanding materials in graph theory and have been defying solutions for more than a century. A hamiltonian cycle C of graph G is described as < u1, u2, ..., un(G), u1 > to emphasize the order of vertices in C. Thus, u1 is the starting vertex and ui is the i-th vertex in C. Two hamiltonian cycles C1 = < u1, u2, ..., un(G), u1 > and C2 = < v1, v2, ..., vn(G), v1 > of G
are independent if u1 = v1 and ui is not equal to vi for every i in { 2, ..., n(G) }. A set of hamiltonian cycles { C1, C2, ..., Ck } of G are mutually independent if its elements are pairwise independent. The mutually independent hamiltonianicity IHC(G) of graph G the maximum integer k such that for any vertex u of G there exist k mutually independent hamiltonian cycles of G starting at u. We study this problem on some interconnection networks and graphs.
|
author2 |
Tan, Jimmy J. M. |
author_facet |
Tan, Jimmy J. M. Lin, Cheng-Kuan 林政寬 |
author |
Lin, Cheng-Kuan 林政寬 |
spellingShingle |
Lin, Cheng-Kuan 林政寬 A Study of the Mutually Independent Hamiltonicity and the Spanning Connectivity of Some Interconnection Networks |
author_sort |
Lin, Cheng-Kuan |
title |
A Study of the Mutually Independent Hamiltonicity and the Spanning Connectivity of Some Interconnection Networks |
title_short |
A Study of the Mutually Independent Hamiltonicity and the Spanning Connectivity of Some Interconnection Networks |
title_full |
A Study of the Mutually Independent Hamiltonicity and the Spanning Connectivity of Some Interconnection Networks |
title_fullStr |
A Study of the Mutually Independent Hamiltonicity and the Spanning Connectivity of Some Interconnection Networks |
title_full_unstemmed |
A Study of the Mutually Independent Hamiltonicity and the Spanning Connectivity of Some Interconnection Networks |
title_sort |
study of the mutually independent hamiltonicity and the spanning connectivity of some interconnection networks |
publishDate |
2011 |
url |
http://ndltd.ncl.edu.tw/handle/81137779622233546680 |
work_keys_str_mv |
AT linchengkuan astudyofthemutuallyindependenthamiltonicityandthespanningconnectivityofsomeinterconnectionnetworks AT línzhèngkuān astudyofthemutuallyindependenthamiltonicityandthespanningconnectivityofsomeinterconnectionnetworks AT linchengkuan jiāohuànwǎnglùdehùchìhànmǐěrdùnxìngzhìyǔshēngchéngliántōngxìngdeyánjiū AT línzhèngkuān jiāohuànwǎnglùdehùchìhànmǐěrdùnxìngzhìyǔshēngchéngliántōngxìngdeyánjiū AT linchengkuan studyofthemutuallyindependenthamiltonicityandthespanningconnectivityofsomeinterconnectionnetworks AT línzhèngkuān studyofthemutuallyindependenthamiltonicityandthespanningconnectivityofsomeinterconnectionnetworks |
_version_ |
1718048907039080448 |