Summary: | 碩士 === 修平科技大學 === 精密機械與製造科技研究所 === 99 === Magnetic abrasive finishing is process of abrasive machining conditions, by using magnetic field energy and abrasives on different such as spindle speed, feed rate, abrasive size and the gap between tool and workpiece etc. Magnetic abrasive finishing can effectively remove burrs and increase surface finish, especially suited for the inner hole and groove. Magnetic abrasive finishing not only provides workpiece with high machining accuracy and minimal surface damage, but also has the advantages of mass production and speed. This paper integrates machine center cutting process and magnetic abrasive finishing (MAF) producing a combined process that improves the magnetic abrasive loss rate (MALR) and surface roughness (SR) of aluminum alloy 6061-T6 with ladder shape of different height. The present study shows the features of the development with mathematical model based on response surface methodology (RSM) for correlating the interactive and second order influences of major machining parameters such as different size and shape abrasive of stainless, spindle speed, tool and workpiece gap, feed speed, respectively. The experiments design, regression analysis and analysis of variance are used to develop the relationships between process parameters (abrasive size, spindle speed, tool and workpiece gap, feed speed) and responses (MALR and SR) in MAF process. Sensitivity analysis has also been carried out using developed empirical equations. The results shows that developed mathematical models can be applied to estimate the effectiveness of process parameters for MALR and SR with a change of spindle speed affects the MALR more strongly than SR relatively compare to other parameters.
|