The Bayesian Approach to Progressive Type-I Interval Censoring Data under Generalized Gamma Distribution
碩士 === 中原大學 === 應用數學研究所 === 99 === In the survival analysis, the experimental changes may not be continuously observed all the time.Hence complete observations are sometimes not available.In practice, only censored interval data can be obtained. In this research, we assume data come from the general...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | zh-TW |
Published: |
2011
|
Online Access: | http://ndltd.ncl.edu.tw/handle/98630161587575559098 |
id |
ndltd-TW-099CYCU5507080 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-099CYCU55070802015-10-13T20:23:26Z http://ndltd.ncl.edu.tw/handle/98630161587575559098 The Bayesian Approach to Progressive Type-I Interval Censoring Data under Generalized Gamma Distribution 廣義伽瑪分配逐步型一區間設限資料之貝氏分析 Szu-Wei Chu 褚思暐 碩士 中原大學 應用數學研究所 99 In the survival analysis, the experimental changes may not be continuously observed all the time.Hence complete observations are sometimes not available.In practice, only censored interval data can be obtained. In this research, we assume data come from the generalized gamma distribution and they are collected in progressive type-I interval ensoring. We then apply Bayesian analysis via MCMC to do the statistical estimation. Simulation studies, along with the mean square errors of parameters of interest, are shown.Moreover, we analyze the real data set, Carbone et al.(1967), and compare the results with previously done MLE and EM methods. Yu-Jau Lin 林余昭 2011 學位論文 ; thesis 33 zh-TW |
collection |
NDLTD |
language |
zh-TW |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 中原大學 === 應用數學研究所 === 99 === In the survival analysis, the experimental changes may not be continuously observed all the time.Hence complete observations are sometimes not available.In practice, only censored interval data can be obtained.
In this research, we assume data come from the generalized gamma distribution and they are collected in progressive type-I interval ensoring. We then apply Bayesian analysis via MCMC to do the statistical estimation.
Simulation studies, along with the mean square errors of parameters of interest, are shown.Moreover, we analyze the real data set, Carbone et al.(1967), and compare the results with previously done MLE and EM methods.
|
author2 |
Yu-Jau Lin |
author_facet |
Yu-Jau Lin Szu-Wei Chu 褚思暐 |
author |
Szu-Wei Chu 褚思暐 |
spellingShingle |
Szu-Wei Chu 褚思暐 The Bayesian Approach to Progressive Type-I Interval Censoring Data under Generalized Gamma Distribution |
author_sort |
Szu-Wei Chu |
title |
The Bayesian Approach to Progressive Type-I Interval Censoring Data under Generalized Gamma Distribution |
title_short |
The Bayesian Approach to Progressive Type-I Interval Censoring Data under Generalized Gamma Distribution |
title_full |
The Bayesian Approach to Progressive Type-I Interval Censoring Data under Generalized Gamma Distribution |
title_fullStr |
The Bayesian Approach to Progressive Type-I Interval Censoring Data under Generalized Gamma Distribution |
title_full_unstemmed |
The Bayesian Approach to Progressive Type-I Interval Censoring Data under Generalized Gamma Distribution |
title_sort |
bayesian approach to progressive type-i interval censoring data under generalized gamma distribution |
publishDate |
2011 |
url |
http://ndltd.ncl.edu.tw/handle/98630161587575559098 |
work_keys_str_mv |
AT szuweichu thebayesianapproachtoprogressivetypeiintervalcensoringdataundergeneralizedgammadistribution AT chǔsīwěi thebayesianapproachtoprogressivetypeiintervalcensoringdataundergeneralizedgammadistribution AT szuweichu guǎngyìjiāmǎfēnpèizhúbùxíngyīqūjiānshèxiànzīliàozhībèishìfēnxī AT chǔsīwěi guǎngyìjiāmǎfēnpèizhúbùxíngyīqūjiānshèxiànzīliàozhībèishìfēnxī AT szuweichu bayesianapproachtoprogressivetypeiintervalcensoringdataundergeneralizedgammadistribution AT chǔsīwěi bayesianapproachtoprogressivetypeiintervalcensoringdataundergeneralizedgammadistribution |
_version_ |
1718047444368883712 |