On the IC-colorings of complete tripartite graphs

碩士 === 中原大學 === 應用數學研究所 === 99 === Let $G$ be a graph and let $f$ be a function which maps $V(G)$ into the set of positive integers. We define $f(H)=Sigma_{v in V(H)}f(v)$ for each subgraph $H$ of $G$. We say $f$ to be an extit{IC-coloring} of $G$ if for any integer $k in [1,f(G)]$ there is a conne...

Full description

Bibliographic Details
Main Authors: Chun-Yi Kuo, 郭俊億
Other Authors: Chin-Lin Shiue
Format: Others
Language:en_US
Published: 2011
Online Access:http://ndltd.ncl.edu.tw/handle/49537015849169965661
id ndltd-TW-099CYCU5507030
record_format oai_dc
spelling ndltd-TW-099CYCU55070302015-10-13T20:23:25Z http://ndltd.ncl.edu.tw/handle/49537015849169965661 On the IC-colorings of complete tripartite graphs 完全三分圖的IC著色 Chun-Yi Kuo 郭俊億 碩士 中原大學 應用數學研究所 99 Let $G$ be a graph and let $f$ be a function which maps $V(G)$ into the set of positive integers. We define $f(H)=Sigma_{v in V(H)}f(v)$ for each subgraph $H$ of $G$. We say $f$ to be an extit{IC-coloring} of $G$ if for any integer $k in [1,f(G)]$ there is a connected subgraph $H$ of $G$ such that $f(H)=k$. Clearly, any connected graph $G$ admits an IC-coloring. The extit{IC-index} of a graph $G$, denoted by $M(G)$, is defined to be $M(G)= maxleftlbrace f(G)mid ight.$ $f$ is an IC-coloring of $left. G ight brace$. If $f$ is an IC-coloring of $G$ such that $f(G) = M(G)$, then we say that $f$ is an maximal IC-coloring of $G$. In this thesis, we prove that $M(K_{m_{1},m_{2},m_{3}})= 13cdot2^{m_{1}+m_{2}+m_{3}-4}-3cdot2^{m_{1}-2}+4$ for $2leq m_{1}leq m_{2}leq m_{3}$. Chin-Lin Shiue 史青林 2011 學位論文 ; thesis 27 en_US
collection NDLTD
language en_US
format Others
sources NDLTD
description 碩士 === 中原大學 === 應用數學研究所 === 99 === Let $G$ be a graph and let $f$ be a function which maps $V(G)$ into the set of positive integers. We define $f(H)=Sigma_{v in V(H)}f(v)$ for each subgraph $H$ of $G$. We say $f$ to be an extit{IC-coloring} of $G$ if for any integer $k in [1,f(G)]$ there is a connected subgraph $H$ of $G$ such that $f(H)=k$. Clearly, any connected graph $G$ admits an IC-coloring. The extit{IC-index} of a graph $G$, denoted by $M(G)$, is defined to be $M(G)= maxleftlbrace f(G)mid ight.$ $f$ is an IC-coloring of $left. G ight brace$. If $f$ is an IC-coloring of $G$ such that $f(G) = M(G)$, then we say that $f$ is an maximal IC-coloring of $G$. In this thesis, we prove that $M(K_{m_{1},m_{2},m_{3}})= 13cdot2^{m_{1}+m_{2}+m_{3}-4}-3cdot2^{m_{1}-2}+4$ for $2leq m_{1}leq m_{2}leq m_{3}$.
author2 Chin-Lin Shiue
author_facet Chin-Lin Shiue
Chun-Yi Kuo
郭俊億
author Chun-Yi Kuo
郭俊億
spellingShingle Chun-Yi Kuo
郭俊億
On the IC-colorings of complete tripartite graphs
author_sort Chun-Yi Kuo
title On the IC-colorings of complete tripartite graphs
title_short On the IC-colorings of complete tripartite graphs
title_full On the IC-colorings of complete tripartite graphs
title_fullStr On the IC-colorings of complete tripartite graphs
title_full_unstemmed On the IC-colorings of complete tripartite graphs
title_sort on the ic-colorings of complete tripartite graphs
publishDate 2011
url http://ndltd.ncl.edu.tw/handle/49537015849169965661
work_keys_str_mv AT chunyikuo ontheiccoloringsofcompletetripartitegraphs
AT guōjùnyì ontheiccoloringsofcompletetripartitegraphs
AT chunyikuo wánquánsānfēntúdeiczhesè
AT guōjùnyì wánquánsānfēntúdeiczhesè
_version_ 1718047442042093568