On the IC-colorings of complete tripartite graphs
碩士 === 中原大學 === 應用數學研究所 === 99 === Let $G$ be a graph and let $f$ be a function which maps $V(G)$ into the set of positive integers. We define $f(H)=Sigma_{v in V(H)}f(v)$ for each subgraph $H$ of $G$. We say $f$ to be an extit{IC-coloring} of $G$ if for any integer $k in [1,f(G)]$ there is a conne...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2011
|
Online Access: | http://ndltd.ncl.edu.tw/handle/49537015849169965661 |
id |
ndltd-TW-099CYCU5507030 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-099CYCU55070302015-10-13T20:23:25Z http://ndltd.ncl.edu.tw/handle/49537015849169965661 On the IC-colorings of complete tripartite graphs 完全三分圖的IC著色 Chun-Yi Kuo 郭俊億 碩士 中原大學 應用數學研究所 99 Let $G$ be a graph and let $f$ be a function which maps $V(G)$ into the set of positive integers. We define $f(H)=Sigma_{v in V(H)}f(v)$ for each subgraph $H$ of $G$. We say $f$ to be an extit{IC-coloring} of $G$ if for any integer $k in [1,f(G)]$ there is a connected subgraph $H$ of $G$ such that $f(H)=k$. Clearly, any connected graph $G$ admits an IC-coloring. The extit{IC-index} of a graph $G$, denoted by $M(G)$, is defined to be $M(G)= maxleftlbrace f(G)mid ight.$ $f$ is an IC-coloring of $left. G ight brace$. If $f$ is an IC-coloring of $G$ such that $f(G) = M(G)$, then we say that $f$ is an maximal IC-coloring of $G$. In this thesis, we prove that $M(K_{m_{1},m_{2},m_{3}})= 13cdot2^{m_{1}+m_{2}+m_{3}-4}-3cdot2^{m_{1}-2}+4$ for $2leq m_{1}leq m_{2}leq m_{3}$. Chin-Lin Shiue 史青林 2011 學位論文 ; thesis 27 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 中原大學 === 應用數學研究所 === 99 === Let $G$ be a graph and let $f$ be a function which maps $V(G)$ into the set of positive integers. We define $f(H)=Sigma_{v in V(H)}f(v)$ for each subgraph $H$ of $G$. We say $f$ to be an extit{IC-coloring} of $G$ if for any integer $k in [1,f(G)]$ there is a connected subgraph $H$ of $G$ such that $f(H)=k$. Clearly, any connected graph $G$ admits an IC-coloring. The extit{IC-index} of a graph $G$, denoted by $M(G)$, is defined to be $M(G)= maxleftlbrace f(G)mid
ight.$ $f$ is an IC-coloring of $left. G
ight
brace$. If $f$ is an IC-coloring of $G$ such that $f(G) = M(G)$, then we say that $f$ is an maximal IC-coloring of $G$. In this thesis, we prove that $M(K_{m_{1},m_{2},m_{3}})= 13cdot2^{m_{1}+m_{2}+m_{3}-4}-3cdot2^{m_{1}-2}+4$ for $2leq m_{1}leq m_{2}leq m_{3}$.
|
author2 |
Chin-Lin Shiue |
author_facet |
Chin-Lin Shiue Chun-Yi Kuo 郭俊億 |
author |
Chun-Yi Kuo 郭俊億 |
spellingShingle |
Chun-Yi Kuo 郭俊億 On the IC-colorings of complete tripartite graphs |
author_sort |
Chun-Yi Kuo |
title |
On the IC-colorings of complete tripartite graphs |
title_short |
On the IC-colorings of complete tripartite graphs |
title_full |
On the IC-colorings of complete tripartite graphs |
title_fullStr |
On the IC-colorings of complete tripartite graphs |
title_full_unstemmed |
On the IC-colorings of complete tripartite graphs |
title_sort |
on the ic-colorings of complete tripartite graphs |
publishDate |
2011 |
url |
http://ndltd.ncl.edu.tw/handle/49537015849169965661 |
work_keys_str_mv |
AT chunyikuo ontheiccoloringsofcompletetripartitegraphs AT guōjùnyì ontheiccoloringsofcompletetripartitegraphs AT chunyikuo wánquánsānfēntúdeiczhesè AT guōjùnyì wánquánsānfēntúdeiczhesè |
_version_ |
1718047442042093568 |