Mining Sequential Patterns with Consideration of Recency, Frequency, and Monetary
碩士 === 國立中正大學 === 資訊管理學系暨研究所 === 99 === For superior decision making, the mining of interesting patterns and rules becomes one of the most indispensible tasks in today’s business environment. Although there have been many successful customer relationship management (CRM) applications based on sequen...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2011
|
Online Access: | http://ndltd.ncl.edu.tw/handle/79664642210952627737 |
id |
ndltd-TW-099CCU00396041 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-099CCU003960412016-04-13T04:16:57Z http://ndltd.ncl.edu.tw/handle/79664642210952627737 Mining Sequential Patterns with Consideration of Recency, Frequency, and Monetary Kao, Yu-Hua 高鈺華 碩士 國立中正大學 資訊管理學系暨研究所 99 For superior decision making, the mining of interesting patterns and rules becomes one of the most indispensible tasks in today’s business environment. Although there have been many successful customer relationship management (CRM) applications based on sequential pattern mining techniques, they basically assume that the importance of each customer are the same. Many studies in CRM show that not all customers have the same contribution to business, and, to maximize business profit, it is necessary to evaluate customer value before the design of effective marketing strategies. In this study, we include the concepts of RFM analysis into sequential pattern mining process. For a given subsequence, each customer sequence contributes its own recency, frequency, and monetary scores to represent customer importance. An efficient algorithm is developed to discover sequential patterns with high recency, frequency, and monetary scores. Empirical results show that the proposed method is more advantageous than conventional sequential pattern mining. Hu, Ya-Han 胡雅涵 2011 學位論文 ; thesis 36 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 國立中正大學 === 資訊管理學系暨研究所 === 99 === For superior decision making, the mining of interesting patterns and rules becomes one of the most indispensible tasks in today’s business environment. Although there have been many successful customer relationship management (CRM) applications based on sequential pattern mining techniques, they basically assume that the importance of each customer are the same. Many studies in CRM show that not all customers have the same contribution to business, and, to maximize business profit, it is necessary to evaluate customer value before the design of effective marketing strategies. In this study, we include the concepts of RFM analysis into sequential pattern mining process. For a given subsequence, each customer sequence contributes its own recency, frequency, and monetary scores to represent customer importance. An efficient algorithm is developed to discover sequential patterns with high recency, frequency, and monetary scores. Empirical results show that the proposed method is more advantageous than conventional sequential pattern mining.
|
author2 |
Hu, Ya-Han |
author_facet |
Hu, Ya-Han Kao, Yu-Hua 高鈺華 |
author |
Kao, Yu-Hua 高鈺華 |
spellingShingle |
Kao, Yu-Hua 高鈺華 Mining Sequential Patterns with Consideration of Recency, Frequency, and Monetary |
author_sort |
Kao, Yu-Hua |
title |
Mining Sequential Patterns with Consideration of Recency, Frequency, and Monetary |
title_short |
Mining Sequential Patterns with Consideration of Recency, Frequency, and Monetary |
title_full |
Mining Sequential Patterns with Consideration of Recency, Frequency, and Monetary |
title_fullStr |
Mining Sequential Patterns with Consideration of Recency, Frequency, and Monetary |
title_full_unstemmed |
Mining Sequential Patterns with Consideration of Recency, Frequency, and Monetary |
title_sort |
mining sequential patterns with consideration of recency, frequency, and monetary |
publishDate |
2011 |
url |
http://ndltd.ncl.edu.tw/handle/79664642210952627737 |
work_keys_str_mv |
AT kaoyuhua miningsequentialpatternswithconsiderationofrecencyfrequencyandmonetary AT gāoyùhuá miningsequentialpatternswithconsiderationofrecencyfrequencyandmonetary |
_version_ |
1718222254921220096 |