Neural Network Portfolio Construction of TSEC Taiwan 50 Index:A Comparison between Technical Analysis and Fundamental Analysis

碩士 === 雲林科技大學 === 財務金融系碩士班 === 98 === The study separately utilizes neural network models of technical indicators and fundamental variables forecasting the constituents stocks of TWSE Taiwan 50 index and comparing the performance of the constructed portfolios in terms of benchmarking TWSE TAIEX and...

Full description

Bibliographic Details
Main Authors: Chuan-Cheng Hsieh, 謝泉澄
Other Authors: Chin-Sheng Huang
Format: Others
Language:zh-TW
Published: 2010
Online Access:http://ndltd.ncl.edu.tw/handle/65697140040684290750
id ndltd-TW-098YUNT5304010
record_format oai_dc
spelling ndltd-TW-098YUNT53040102015-10-13T18:58:56Z http://ndltd.ncl.edu.tw/handle/65697140040684290750 Neural Network Portfolio Construction of TSEC Taiwan 50 Index:A Comparison between Technical Analysis and Fundamental Analysis 類神經網路在台灣50投資組合績效評估:技術分析與基本分析之比較 Chuan-Cheng Hsieh 謝泉澄 碩士 雲林科技大學 財務金融系碩士班 98 The study separately utilizes neural network models of technical indicators and fundamental variables forecasting the constituents stocks of TWSE Taiwan 50 index and comparing the performance of the constructed portfolios in terms of benchmarking TWSE TAIEX and TWSE Taiwan 50 index. Empirical results indicate that prediction accuracy of neural networks of technical indicators and fundamental model respectively account for 60.11% and 72.86%. Moreover, the evidence also shows that the neural network portfolios models of the predicted top 5, top 10, and top 15 outperform the benchmarks of TWSE TAIEX and TWSE Taiwan 50 index. Investors can benefit from neural networks prediction in investment decisions. Chin-Sheng Huang 黃金生 2010 學位論文 ; thesis 92 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 雲林科技大學 === 財務金融系碩士班 === 98 === The study separately utilizes neural network models of technical indicators and fundamental variables forecasting the constituents stocks of TWSE Taiwan 50 index and comparing the performance of the constructed portfolios in terms of benchmarking TWSE TAIEX and TWSE Taiwan 50 index. Empirical results indicate that prediction accuracy of neural networks of technical indicators and fundamental model respectively account for 60.11% and 72.86%. Moreover, the evidence also shows that the neural network portfolios models of the predicted top 5, top 10, and top 15 outperform the benchmarks of TWSE TAIEX and TWSE Taiwan 50 index. Investors can benefit from neural networks prediction in investment decisions.
author2 Chin-Sheng Huang
author_facet Chin-Sheng Huang
Chuan-Cheng Hsieh
謝泉澄
author Chuan-Cheng Hsieh
謝泉澄
spellingShingle Chuan-Cheng Hsieh
謝泉澄
Neural Network Portfolio Construction of TSEC Taiwan 50 Index:A Comparison between Technical Analysis and Fundamental Analysis
author_sort Chuan-Cheng Hsieh
title Neural Network Portfolio Construction of TSEC Taiwan 50 Index:A Comparison between Technical Analysis and Fundamental Analysis
title_short Neural Network Portfolio Construction of TSEC Taiwan 50 Index:A Comparison between Technical Analysis and Fundamental Analysis
title_full Neural Network Portfolio Construction of TSEC Taiwan 50 Index:A Comparison between Technical Analysis and Fundamental Analysis
title_fullStr Neural Network Portfolio Construction of TSEC Taiwan 50 Index:A Comparison between Technical Analysis and Fundamental Analysis
title_full_unstemmed Neural Network Portfolio Construction of TSEC Taiwan 50 Index:A Comparison between Technical Analysis and Fundamental Analysis
title_sort neural network portfolio construction of tsec taiwan 50 index:a comparison between technical analysis and fundamental analysis
publishDate 2010
url http://ndltd.ncl.edu.tw/handle/65697140040684290750
work_keys_str_mv AT chuanchenghsieh neuralnetworkportfolioconstructionoftsectaiwan50indexacomparisonbetweentechnicalanalysisandfundamentalanalysis
AT xièquánchéng neuralnetworkportfolioconstructionoftsectaiwan50indexacomparisonbetweentechnicalanalysisandfundamentalanalysis
AT chuanchenghsieh lèishénjīngwǎnglùzàitáiwān50tóuzīzǔhéjīxiàopínggūjìshùfēnxīyǔjīběnfēnxīzhībǐjiào
AT xièquánchéng lèishénjīngwǎnglùzàitáiwān50tóuzīzǔhéjīxiàopínggūjìshùfēnxīyǔjīběnfēnxīzhībǐjiào
_version_ 1718039579755282432