A Novel Photo-Thermoelectric Generator Integrating DSSCs with Thermoelectric Modules

碩士 === 國立臺北科技大學 === 機電整合研究所 === 98 === This study self-develops a novel type of photoelectric conversion modules, adopting pre-prepared dye-sensitized solar cells (DSSCs) and combing with nano-Cu thermoelectric thin film to cover on the sides of the thermoelectric generator (TEG) to absorb outside l...

Full description

Bibliographic Details
Main Authors: Chih-Jung Yu, 余智融
Other Authors: 張合
Format: Others
Language:zh-TW
Published: 2010
Online Access:http://ndltd.ncl.edu.tw/handle/kh262x
Description
Summary:碩士 === 國立臺北科技大學 === 機電整合研究所 === 98 === This study self-develops a novel type of photoelectric conversion modules, adopting pre-prepared dye-sensitized solar cells (DSSCs) and combing with nano-Cu thermoelectric thin film to cover on the sides of the thermoelectric generator (TEG) to absorb outside light to generate electricity and use recycled waste heat to re-generate electricity. And then, the close-loop pulsating heat pipe of filling nano-CuO fluid is prepared on the cooling-side to increase cooling effects and enhance whole power generation efficiency. Thus, this study focuses on the application of elevating efficiency of the thermoelectric modules. For the preparation of the thermoelectric modules, commercial nano-Cu powder is firstly used and the doctor blade is adopted to fabricate nano-Cu heat-transfer film, serving as the media of thermal conductivity and coated on the TEG to promote the output of heat flux and energy. Secondly, submerged arc nanoparticle synthesis system (SNASS) is used to fabricate the nano-CuO fluid and the filling close-loop pulsating heat pipe is applied to the cold side to employ the variation of gas and liquid to increase cooling effects. For the fabrication of photoelectric conversion modules, this study adopts DSSCs with multi-layer TiO2 nano-film to combine with two systems to assemble the photo-thermoelectric modules. For the test of photo-thermoelectric modules, I-V measuring system and heating platform are used to deal with the output effects and electrical storage loop system and nickel-metal hydride batteries are used to test electrical storage time of photo-thermoelectric modules. Finally, the temperature measurement device is employed to analyze the performance output and conversion efficiency of photo-thermoelectric modules by simulated light and practical light. Results shows when the heat source of photo-thermoelectric modules attains 90 ℃, 85.7% power output can be elevated. The temperature difference of cold and hot sides of TEG can reach 7oC shone by simulated light of photo-thermoelectric modules and thermoelectric conversion efficiency can achieve 2.17% and produce 11.32mW/cm2 power output, enhancing 1.4% compared to singly adopting DSSCs.