The strong unique continuation property for the Dirac operator
碩士 === 臺灣大學 === 數學研究所 === 98 === This paper is a survey of strong unique continuation property for the Dirac equation. We know that a function can be non-triviual even if it vanishes of infinite order at some point. We say a differential equation(or inequality) has strong unique continuation propert...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2010
|
Online Access: | http://ndltd.ncl.edu.tw/handle/22113404783084719266 |
id |
ndltd-TW-098NTU05479039 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-TW-098NTU054790392015-10-13T18:49:40Z http://ndltd.ncl.edu.tw/handle/22113404783084719266 The strong unique continuation property for the Dirac operator 狄拉克算子強唯一連續延拓性的統整 Wen-Yen Feng 馮文彥 碩士 臺灣大學 數學研究所 98 This paper is a survey of strong unique continuation property for the Dirac equation. We know that a function can be non-triviual even if it vanishes of infinite order at some point. We say a differential equation(or inequality) has strong unique continuation property(SUCP) if u is a solution of this differential equation (or inequality) and u vanishes of infinite order at some x_{0}, then u is identically zero. 王振男 2010 學位論文 ; thesis 46 en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
description |
碩士 === 臺灣大學 === 數學研究所 === 98 === This paper is a survey of strong unique continuation property for the Dirac equation. We know that a function can be non-triviual even if it vanishes of infinite order at some point. We say a differential equation(or inequality) has strong unique continuation property(SUCP) if u is a solution of this differential equation (or inequality) and u vanishes of infinite order at some x_{0}, then u is identically zero.
|
author2 |
王振男 |
author_facet |
王振男 Wen-Yen Feng 馮文彥 |
author |
Wen-Yen Feng 馮文彥 |
spellingShingle |
Wen-Yen Feng 馮文彥 The strong unique continuation property for the Dirac operator |
author_sort |
Wen-Yen Feng |
title |
The strong unique continuation property for the Dirac operator |
title_short |
The strong unique continuation property for the Dirac operator |
title_full |
The strong unique continuation property for the Dirac operator |
title_fullStr |
The strong unique continuation property for the Dirac operator |
title_full_unstemmed |
The strong unique continuation property for the Dirac operator |
title_sort |
strong unique continuation property for the dirac operator |
publishDate |
2010 |
url |
http://ndltd.ncl.edu.tw/handle/22113404783084719266 |
work_keys_str_mv |
AT wenyenfeng thestronguniquecontinuationpropertyforthediracoperator AT féngwényàn thestronguniquecontinuationpropertyforthediracoperator AT wenyenfeng dílākèsuànziqiángwéiyīliánxùyántàxìngdetǒngzhěng AT féngwényàn dílākèsuànziqiángwéiyīliánxùyántàxìngdetǒngzhěng AT wenyenfeng stronguniquecontinuationpropertyforthediracoperator AT féngwényàn stronguniquecontinuationpropertyforthediracoperator |
_version_ |
1718038437993381888 |